
Testing for Convergence in 
Carbon Dioxide Emissions using a 

Bayesian Robust Structural Model 

Octavio Fernández‐Amador,  Doris A. Oberdabernig 
and Patrick Tomberger 

WTI Working Paper No. 01/2017 



Testing for Convergence in Carbon Dioxide Emissions

using a Bayesian Robust Structural Model ∗

Octavio Fernández-Amador†

Doris A. Oberdabernig‡

Patrick Tomberger§

Abstract

We address international convergence in Carbon Dioxide emissions per capita and
per value added derived from emission inventories based on production and consump-
tion patterns. We propose a Bayesian structural model that accounts for heteroscedas-
ticity, endogeneity between emissions and economic growth, and tests for the existence
of group-specific convergence via shrinkage priors. We find evidence for country-
specific conditional convergence in all emission inventories, implying a half-life of
2.7–3.1 years for production-based emissions and 3.6–4.7 years for consumption-based
emissions. When testing for global convergence without allowing for individual-specific
convergence paths, the half-life of CO2 per capita increases to 15–26 years, whereas
emission intensities show a half-life of 44–45 years. Our results highlight the current
incompatibility between emission targets and economic growth and the need for faster
diffusion of green technologies. Moreover, there is no evidence for specific convergence
dynamics in the European Union, the OECD, or the countries that ratified the Kyoto
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1 Introduction

Global warming and its consequences are at the center of current policy debate on the

sustainability of economic development. The Paris Agreement stipulates holding the global

average temperature below 2◦C above pre-industrial levels to bring climate change under

control;1 for this to happen, the 194 countries that signed the agreement are compelled

to reach the global peak of greenhouse gas (GHG) emissions as soon as possible (Paris

Agreement, Art. 2 and 4). The underlying question is how to make economic growth

compatible with limited or decreased pollution, particularly GHG emissions.

The Environmental Kuznets Curve (EKC) predicts that pollution increases with rising

income per capita and falls after a peak in emissions has been reached. However, the

existence of a turning point in GHG emissions after which emissions start to decrease with

economic growth has not been unanimously confirmed by empirical research. Especially

for Carbon Dioxide (CO2) emissions the existence of such peak has often been rejected.2

Against this background, it is important to know whether global carbon emissions will

eventually reach a limit; only then the growth rate of atmospheric concentrations of CO2

will stabilize.

The patterns of convergence of CO2 emissions per capita towards a certain emission level

and the height of this level have important implications for the design of the international

regulatory framework. Reliable information on whether the steady state of emissions is

global or country-specific and on how long it will take for countries to reach this steady

state can strengthen the ongoing policy debate. Related to this, the convergence dynam-

ics of carbon emissions derived from both national production and consumption activities

should be better understood when revising environmental responsibility, as they charac-

terize the path of emissions associated with further economic development in a globalized

context. Increasingly fragmented value chains allow the geographical location of produc-

tion stages to differ from the place of final consumption. A mere focus on territorial-based

emissions neglects the importance of trade in intermediates and carbon leakage, i.e. the

shift of highly pollutant industries from countries with stringent environmental regulation

to countries with less strict regulation (e.g. Aichele and Felbermayr, 2015; Babiker, 2005;

Fernández-Amador et al., 2016).

1 See Knutti and Fischer (2015) for a critical analysis of the 2◦C target.
2 Empirical studies that investigate the existence of an EKC in CO2 emissions usually fail to find such a

relationship in samples covering a large group of countries (see e.g. Stern, 2004, and Stern, 2017, for
exhaustive surveys, or Fernández-Amador et al., 2017, for a survey of empirical applications). Aslanidis
and Iranzo (2009) and Fernández-Amador et al. (2017) provided evidence that the income elasticity of
CO2 emissions decreases as income per capita rises above a threshold level though emissions continue
growing, what challenges the sustainability of economic growth.
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In addition, it is relevant to understand to what extent the dynamics of international con-

vergence of emissions per capita is driven by convergence in carbon efficiency worldwide.

The adoption of more environmentally friendly technologies will lower carbon intensities,

which is particularly relevant for developing countries, as they need to combine remark-

able economic growth targets with emission reduction goals.3 If international technology

transfers occur and emerging economies adopt greener production methods, the global pro-

duction network will eventually become more sustainable, and CO2 emissions per value

added will converge across countries. This will in turn promote convergence in emissions

per capita.

The assessment of convergence in CO2 emissions has received considerable attention in

the empirical literature.4 Most studies tested for convergence in CO2 per capita across

different groups of countries, but their results remain broadly inconclusive.5 By contrast,

a smaller number of studies investigated convergence in carbon efficiency, pointing invari-

ably towards the existence of convergence across countries.6 However, all these studies

focused on production-based emissions, while cross-country convergence in CO2 embodied

in consumption has not yet been investigated.7

We evaluate international convergence in CO2 emissions per capita and per value added

derived from national production- and consumption-based inventories worldwide. We put

forward a Bayesian test of β-convergence that is based on the theoretical models by Brock

and Taylor (2010) and Ordás Criado et al. (2011). Our model also allows for potential

group-specific dynamics of convergence using Bayesian shrinkage priors. Our convergence

test is robust to heteroscedasticity and accounts for potential endogeneity between the

growth rates of emissions and GDP per capita by means of instrumental variables (IV)

estimation.

3 The Paris Agreement recognizes the need to support developing countries in order to facilitate the
effective implementation of the objectives identified in the Agreement (Paris Agreement, Art. 2).

4 See Pettersson et al. (2014) and Stern (2017) for comprehensive surveys of the literature on convergence
in pollution emissions.

5 The findings of the literature range from evidence for convergence (Strazicich and List, 2003; Nguyen,
2005; Ezcurra, 2007; Romero-Ávila, 2008; Lee et al., 2008; Westerlund and Basher, 2008; Lee and
Chang, 2009; Brock and Taylor, 2010; Jobert et al., 2010; Huang and Meng, 2013; Yavuz and Yilanci,
2013; Anjum et al., 2014; Hao et al., 2015; Wu et al., 2016; Zhao et al., 2015) over the existence of
convergence clubs (Nguyen, 2005; Aldy, 2006; Lee and Chang, 2008; Panopoulou and Pantelidis, 2009;
Barassi et al., 2011; Ordás Criado and Grether, 2011; Camarero et al., 2013; Herrerias, 2013; Wang
et al., 2014; Burnett, 2016) to no evidence for convergence (Aldy, 2007; Barassi et al., 2008; Nourry,
2009).

6 See Anjum et al. (2014), Camarero et al. (2013) and Panopoulou and Pantelidis (2009).
7 Aldy (2007) investigates convergence of CO2 emissions across US states. This is the only study so far

that also covers consumption inventories. The author did not find evidence for convergence for either
CO2 production or for CO2 consumption per capita. In contrast to Aldy, our study covers economies
at different development states, thus being the first one to evaluate global convergence patterns in CO2

consumption.
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Our contribution is twofold. First, we assess international convergence in production- and

consumption-based carbon emissions for the first time by using a comprehensive dataset

on comparable CO2 emission inventories published, and recently updated, by Fernández-

Amador et al. (2016). The dataset covers 178 economies (grouped in 66 countries and

12 composite regions) and extends over 17 years after the Kyoto Protocol ratification. A

period marked by the implementation of environmental policies against climate change in

developed countries. The focus on both inventories allows to account for the increasing de-

tachment between CO2 per capita generated by production activities and CO2 embodied

in final consumption in a period of rapidly expanding global production networks, which

permit cross-border sourcing of carbon in final consumption. In addition, we analyze CO2

emissions per value added (carbon intensity or efficiency) and draw conclusions on whether

the detected patterns are driven by efficiency effects. While CO2 per capita offers impor-

tant insights on convergence stemming from the expansion of production or consumption

in a country, convergence in CO2 intensity provides information on whether countries that

use more pollutant production methods eventually catch up with environmentally more

efficient economies.

Second, our structural model presents some interesting features. It uses a Bayesian

stochastic search variable selection prior (SSVS, George and McCulloch, 1993) to test

for the existence of group-specific convergence dynamics. The groups comprise the Eu-

ropean Union (EU), the OECD, and the countries that ratified Annex I of the Kyoto

Protocol. The model is robust to cross-sectional heteroscedasticity—it is based on a scale

mixture of multivariate normals, where the hyperparameter governing the distribution of

the individual-specific variances is estimated endogenously. Furthermore, it formulates a

flexible Cholesky-prior to instrument potentially endogenous regressors. This prior was

proposed by Lopes and Polson (2014) in the framework of normal distributions, and, to

the best of our knowledge, this is the first time this prior is applied in the context of scale

mixtures of multivariate normals.8

Our results point to the existence of country-specific conditional convergence in all four

emission inventories. The speed of convergence implies a half-life of 2.7–3.1 years for

production inventories and 3.6–4.7 years for CO2 consumption. Convergence towards

global steady states, though conditioned on the political and economic structures, is much

slower, implying a half-life of 15 and 26 years for emissions production and, respectively,

consumption per capita and 44–45 years for emission intensities. Moreover, we do not find

8 Salois and Balcombe (2015) proposed a related model in the context of cross-section, where t-distributed
errors in an IV-model are represented by weighted the errors of normals. Their modelization shares with
ours the use of scale mixture of normals representation, though the authors do not perform Cholesky-
rotation of the system to represent it as a recursive system of equations but condition the weighted
errors on each other and use a Wishart prior for the variance-covariance matrix.
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support for the existence of group-specific convergence dynamics for countries belonging

to the OECD, the EU, or the Annex I of the Kyoto Protocol. These findings evince the

ineffectiveness of environmental policies implemented in developed economies and pose

doubts on the feasibility of an effective global action against climate change.

The next section reviews the literature on convergence. Section 3 describes the data. In

section 4, we explain the specification of the convergence test. Section 5 presents the

results and section 6 concludes.

2 Literature review

Convergence tests received considerable attention in the empirical literature evaluating

the predictions of the Solow (1956) growth model. Early studies tested whether coun-

tries starting out from low income levels experienced higher subsequent growth rates,

either conditional on or unconditional of control variables (β-convergence).9 Later studies

suggested that β-convergence could be driven by regression to the mean (see Friedman,

1992; Quah, 1993) and tested whether the dispersion of income across countries was nar-

rowing over time (σ-convergence).10 Yet, Sala-i-Martin (1996) pointed out the merits of

β-convergence for providing insights into growth dynamics. Although β-convergence is

not sufficient for σ-convergence, it is a necessary condition (Sala-i-Martin, 1996; Young

et al., 2008) and provides valuable information whenever alternative tests for convergence

cannot be applied.11

Besides cross-sectional convergence tests, also time-series approaches have been devel-

oped. Several authors investigated stochastic convergence of income levels via unit root

testing, that is, whether income shocks are of permanent or temporary nature.12 While

these approaches became increasingly popular as more data became available over time,

Bernard and Durlauf (1996) pointed out that they are grounded on the assumption that

9 Earlier studies focused on unconditional convergence, while more recent studies tested for conditional
convergence, i.e. convergence after allowing for heterogeneity across countries by accounting for addi-
tional determinants of economic growth. While unconditional convergence was often found for OECD
countries, it was generally rejected for samples including non-OECD countries. If countries converge
to different steady states, unconditional convergence models might result in biased coefficient estimates
as the model used for estimation is miss-specified (see Barro and Sala-i Martin, 2004). See for example
Baumol (1986); Barro (1991); Barro and Sala-i Martin (1992); Mankiw et al. (1992); Barro and Sala-i
Martin (2004).

10 See e.g. Barro and Sala-i Martin (1992); Quah (1993); Sala-i-Martin (1996); Young et al. (2008). Phillips
and Sul (2007b) developed a test for identifying club-convergence groups, which corresponds to a test
of conditional σ-convergence (see Phillips and Sul, 2007b). Phillips and Sul (2007a) provided a short
empirical application of the test in the context of economic growth convergence.

11 See e.g. Ravallion (2003) who applies β-convergence tests to international income inequality.
12 See e.g. Carlino and Mills (1993); Quah (1993); Bernard and Durlauf (1996); Evans and Karras (1996).
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the economies in the sample are near their long-run equilibria. In this sense, the use of

time-series tests may be invalid if the data are driven by transition dynamics.13

Similar to the Solow model for economic growth, there are theoretical models that predict

convergence of pollution emission levels across countries over time (e.g. Brock and Taylor,

2010; Ordás Criado et al., 2011). Like the Solow model, these boil down econometrically

to an equation of conditional β-convergence.

Empirical studies on convergence in CO2 per capita derived from production activities led

to inconclusive findings. For OECD countries, Strazicich and List (2003), Romero-Ávila

(2008), Lee et al. (2008), Lee and Chang (2009), Jobert et al. (2010), and Yavuz and

Yilanci (2013) found evidence for convergence. Lee and Chang (2008) and Barassi et al.

(2011) reported convergence only for a subgroup of countries, and Barassi et al. (2008)

did not detect evidence for convergence.14

A growing number of studies included developing countries in their samples. Ezcurra

(2007), Westerlund and Basher (2008), Brock and Taylor (2010), and Anjum et al. (2014)

provided evidence for convergence across countries of different income status. Panopoulou

and Pantelidis (2009), Ordás Criado and Grether (2011), and Herrerias (2013) detected

several convergence clubs,15 and Nguyen (2005) and Aldy (2006) found convergence only

in sub-groups or clubs of developed economies. Nourry (2009) failed to detect evidence

for cross-country convergence.

Some authors focused on convergence across regions in China and the US. For China,

Huang and Meng (2013) detected overall convergence and Wu et al. (2016) found evidence

for club convergence. For the US, Burnett (2016) found a club of 26 converging states,

while convergence for the US as a whole was rejected. While all these studies focused on

CO2 production inventories, Aldy (2007) additionally assessed consumption of CO2 per

capita in the US states, but did not find convergence in either measure.

The heterogeneous findings of the literature on CO2 convergence are in line with the

inconclusive evidence for the existence of an environmental Kuznets curve (EKC). The

EKC hypothesis suggests that as national income levels rise, pollution first increases with

income, but after a certain level of income has been reached this mechanism is reversed.16

If income levels are positively correlated with CO2 emissions, the existence of an EKC

13 See also Panopoulou and Pantelidis (2009), Jobert et al. (2010) and Ordás Criado and Grether (2011)
for surveys on β-, σ- and stochastic convergence.

14 Studies for OECD countries focused mainly on stochastic and β-convergence. For more details on the
concept of convergence used by the respective studies, see Table A.1 in the Appendix.

15 Panopoulou and Pantelidis (2009) and Herrerias (2013) applied the Phillips and Sul (2007b) test for
convergence clubs. Ordás Criado and Grether (2011) found evidence for income-specific and regional
convergence clubs especially for the sub-period 1980–2000.

16 See Dasgupta et al. (2002), Kaika and Zervas (2010), and Stern (2004, 2017) for reviews, and Fernández-
Amador et al. (2017) for a summary of the most recent evidence.
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relationship would ultimately lead to emission convergence (Stern, 2017). However, even

though empirical studies find a positive relationship between economic growth and CO2

emissions, the evidence favoring an EKC-type relationship is restricted to time-series or

panel studies covering OECD economies.17

Improvements in carbon efficiencies (i.e. CO2 per value added) are an important require-

ment for reaching the turning point postulated by the EKC. High-income countries gen-

erally are more carbon efficient than less developed economies (Fernández-Amador et al.,

2016). This can be explained by their stronger preferences for a cleaner environment,

better access to cleaner technology and potential for carbon leakage. Carbon leakage will

impede convergence in carbon emission intensities, as firms with larger emission intensity

might relocate to countries with less stringent environmental regulation. However, if the

rapid increase in international trade induces transfers of green technology to less developed

countries, their carbon efficiency could improve more rapidly (Grossman and Helpman,

1995), which would contribute to convergence in carbon intensities. Thus, although most

studies focused on CO2 emissions per capita, evaluating convergence in carbon intensities

provides additional insights in the convergence patterns across countries.18

Among the existing studies on convergence in the intensity of CO2 emissions from produc-

tion activities, Camarero et al. (2013) identified four convergence clubs among 22 OECD

countries using the test for club-convergences developed by Phillips and Sul (2007b). An-

jum et al. (2014) and Panopoulou and Pantelidis (2009) provided evidence for convergence

in a panel of 136 and 128 countries, respectively. Focusing on Chinese regions, the results

of Hao et al. (2015) and Zhao et al. (2015) suggested convergence of emission intensity,

while Wang et al. (2014) found evidence for club convergence.19

3 Data

CO2 emissions per capita and per value added derived from production and consumption

inventories are available from the emissions database constructed by Fernández-Amador

et al. (2016). Following Fernández-Amador et al. (2016), we define carbon intensities as

17 Schmalensee et al. (1998) is an exception, finding support for an inverse-U relationship using non-
parametric techniques. More recently, Aslanidis and Iranzo (2009) and Fernández-Amador et al. (2017)
found that the income-elasticity of CO2 emissions decreases slightly after income per capita passes
a certain threshold, such that relative decoupling increases with economic growth, though there is no
evidence of absolute decoupling and an EKC relationship. Fernández-Amador et al. (2017) also provided
evidence for a similar pattern in CO2 consumption-based inventories.

18 Anjum et al. (2014) reported that the negative correlation between initial emission and subsequent
emission growth is stronger for CO2 intensity than for CO2 per capita.

19 All of these studies define CO2 intensity as CO2 per GDP. In our analysis we refer to CO2 intensity as
CO2 per value added.
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carbon per value added rather than per GDP. For production inventories, value added

is computed as value added embodied in production, whereas for consumption-based in-

ventories, it is calculated as value added embodied in consumption. Therefore, emission

inventories and value added are measured at the same stage of the supply chain. The

dataset consists of a balanced panel of national production- and consumption-based car-

bon dioxide emission inventories from fossil fuel combustion covering 66 countries and 12

composite regions (encompassing a total of 178 economies) over the years 1997, 2001, 2004,

2007, 2011 and 2014 (468 observations).20 It relies on input-output, trade and energy data

of several releases of the Global Trade Analysis Project (GTAP) database.

To test for the presence of β-convergence, we compute the growth rates of the four emission

inventories, which we consecutively use as dependent variables in the empirical analysis.

Since the data-points are unequally spaced in time (3 to 4 periods), we calculate the

average growth rate of emissions between years t − s and t, where s is the number of

periods between two observations (see Ravallion, 2003, for a similar methodology).21 The

resulting average growth rates allow to evaluate convergence in the large-N, small-T panel

dataset, for which time-series methods cannot be used.22 Furthermore, by using average

growth rates, we avoid to capture short-term fluctuations in emissions that could result in

an upward bias of the estimates of the convergence speed (see Ordás Criado et al., 2011).

Our baseline control variables are derived from the theoretical model by Ordás Criado

et al. (2011). They comprise the lagged level of CO2 emissions, which should capture

potential convergence forces, the growth rate of purchasing-power parity (ppp) adjusted

real GDP per capita over the period considered, which should capture the scale effect of

economic growth on emissions, and the lagged level of ppp-adjusted GDP per capita, as a

proxy for capital per efficient labor (see Ordás Criado et al., 2011, for details). GDP per

capita is sourced from the World Development Indicators (WDI) dataset.

To limit potential omitted variable bias (see Barro and Sala-i Martin, 2004), we add a

large set of additional control variables capturing economic, structural and institutional

20 A description of the countries included in the composite regions is available in Fernández-Amador et al.
(2016). The dataset has been recently extended by the authors to cover the year 2014.

21 This corresponds to calculating average yearly growth rates. For a similar method see Ravallion (2003),
who accounts for the unequal spacing in time between measures of income inequality for large-N, small-
T panel data by regressing the difference in inequality between time t and the initial period t1 on
a constant and initial inequality in time t1, both multiplied by a time-trend (t − 1). In contrast to
Ravallion’s data, our panel is balanced in the sense that for every individual we observe all variables in
the same points in time. Thus, we can also exploit the variation of the data across time and use initial
emissions in year t− s instead of in year t1 as a regressor.

22 Bernard and Durlauf (1996) pointed out that the power of time-series tests may be weak when the
dynamics do not occur near the steady state. In this sense, time-series approaches to test for stochastic
convergence may not be particularly suitable in our context, since data on CO2 emissions covering a
global sample of countries are very likely to be driven by transition dynamics rather than being near
the steady state.
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characteristics of the individuals in the sample, and include individual-, and time-dummies

(see Table A.2 in the Appendix for details on the variables definitions and data sources).

We derive trade flows as a share of GDP as well as value added shares of different sectors

of the economy (agriculture, energy, light manufacturing, heavy manufacturing, textiles,

water services, construction, trade and transport, and remaining services) from the GTAP

database.23 Data on population density, the share of fossil fuels and nuclear energy in total

electricity production, and rents from fossil fuel production as a share of GDP are available

from the WDI database. A democracy index, which may channel citizens’ preferences for a

cleaner environment, is sourced from the Polity IV database (see Farzin and Bond, 2006).

Finally, in order to investigate group-specific convergence patterns, we generate dummy

variables for members of the EU, OECD, and Annex I of the Kyoto Protocol.

4 Econometric model

We develop a Bayesian test for β-convergence as an extension of the model proposed by

Ordás Criado et al. (2011).24 The model specification is a dynamic panel that enables

to test for the existence of specific convergence groups, accounts for endogeneity of the

regressors, and allows for cross-sectional heteroscedasticity of the error terms.

Let Eit be, alternatively, the natural logarithm of CO2 emissions per capita or per value

added in country i at time t, where i ⊆ [1, . . . , N ] and t ⊆ [1, . . . , T ], and let Gi,t,s =

(Ei,t −Ei,t−s)/s be the average growth rate of Ei over the period t− s and t. The test is

23 Detailed information on the sector aggregation from the original GTAP sectoral disaggregation is avail-
able from the authors upon request.

24 Ordás Criado et al. (2011) tested for convergence in sulfur oxides and nitrogen oxides. Their theoretical
model assumes optimal control of pollution emissions at the national level, making it particularly suited
for applications to local air pollutants. Nevertheless, the structure of the empirical model they specify is
compatible with the green Solow model by Brock and Taylor (2010), which the authors applied to CO2

emissions. Ordás Criado et al. (2011) regressed the average growth rates of emissions over the period
t − 5 to t on the level of emissions at the initial period of the growth rate (t − 5), the growth rate of
GDP over t− 5 and t, GDP in t− 5, and time- and individual-dummies by OLS and a non-parametric
model. The authors also addressed endogeneity between emissions and GDP by instrumenting GDP
and its growth rate with their lagged values (following Barro and Sala-i Martin 1992). Brock and Taylor
(2010) developed a theoretical model that also predicts conditional β-convergence, which the authors
applied to CO2 emissions. Although Brock and Taylor’s model is applicable to global pollutants, in our
empirical approach we follow Ordás Criado et al. (2011) since their empirical analysis makes use of the
panel structure of the data and accounts for the potential endogeneity of GDP per capita.
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defined by the following recursive structural model with instrumental equation:

Gi,t,s = βEi,t−s + π0gi,t,s + π1Yi,t−s +
∑
r

[λrzr,i,t−s] + (1)

+δt + αi +
∑
j

[βjdjEi,t−s] + ε1,it

gi,t,s = αiv + βivL(gi,t,s) + ε2,it (2)

(ε1,it, ε2,it) ∼ N(0,Σωi) (3)

The (average) growth rate of emissions (Gi,t,s) over t−s and t depends on the logarithm of

the level of emissions in country i at period t−s (Ei,t−s), the (average) growth rate of real

GDP per capita over the period t− s and t (gi,t,s), the logarithm of real GDP per capita

of country i in t − s (Yi,t−s), a set of control variables as described in the data section

(zj,i,t−s), time-effects (δt), and individual-dummies (αi). The dj ’s are dummy variables for

group membership in the EU, OECD, and Annex I of the Kyoto Protocol. The parameter

associated with Ei,t−s is the parameter of interest; in particular, β < 0 provides evidence

for conditional β-convergence.

The relationship between the growth rate of emissions and the growth rate of GDP per

capita is potentially endogenous. Thus, we follow Barro and Sala-i Martin (1992) and

instrument the growth rate of GDP per capita with its growth rate in the previous period,

denoted L(gi,t,s), as described in equation (2), where L(·) is the lag operator.25

The priors for the parameters in (1)–(2) are collected in the following set of equations:

β ∼ N(0, τ) (4)

π0, π1, λr, δt, αiv, βiv ∼ N(0, φ) (5)

αi ∼ N(0, ψ) (6)

βj ∼ (1− γj)N(0, κ20) + γjN(0, κ21) (7)

γj ∼ Bernoulli(p) (8)

ω−1i ∼ Gamma(ν/2, ν/2) (9)

The prior of β follows a normal distribution with zero mean and precision τ , where τ =

(2/3)2, such that the case for unit root in the original dynamic model of emissions is not

ruled out.26 The priors of the parameters π0, π1, λr, δt, αiv, and βiv follow a normal

25 For the first period in our sample, 1997–2001, we use the average growth rate for a period of the same
length, 1993–1997, as instrument.

26 In the original dynamic model of emissions, once we undo the average growth rate, the relevant param-
eter for the case of regular sampling every period is (1 + β). The precision elicited ensures that the
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distribution with zero mean and precision φ = 0.2.27 We estimate the individual-effects

using the dummy variables approach, where αi is normally distributed with precision

ψ = 0.5.28 An intercept of the model can be retrieved as α = 1
N

∑N
i αi.

Equations (7)–(8) characterize a hierarchical SSVS shrinkage prior (George and McCul-

loch, 1993) that grants flexibility for the data to discriminate among models including

group-specific convergence dynamics (for EU, OECD, and Annex I membership). Each

group-specific prior on βj is modeled as a mixture of two normals with different precisions

κ20 and κ21. κ
2
0 > κ21 so that when γj = 0, βj is restricted to be estimated around 0, whereas

when γj = 1, βj remains unrestricted. We set κ20 = 10 and κ21 = 1. To reflect the absence

of prior beliefs about the existence of specific group convergence we set p = 0.5.

The prior elicited in equation (9) defines the distribution of the variances of the individual-

specific error terms (e1,it, e2,it). Each individual-specific variance parameter takes the

form Σωi, such that the model exhibits cross-sectional heteroscedasticity. The equation

is defined in terms of precisions (inverse of the variances). The gamma prior for the

precisions is equivalent to a χ2(ν)/ν and characterizes the model as a scale mixture of

normals, where the weights are individual-specific.29

The hyperparameter ν is estimated endogenously with prior

ν = buc (10)

u ∼ Exp(1/λ), u ∈ (3, 60), (11)

where the function b·c rounds the values of u to the nearest integer. Exp in equation (11)

stands for an exponential distribution where the rate parameter λ is set to 25, such that

hypothesis of unit root in our autoregressive model with explanatory variables is not an extreme event
in our prior for β.

27 The precision is defined as the inverse of the variance. A precision of 0.2 implies a variance of 5.
28 Note that the precision of the individual-dummies is larger than the precision of the rest of the param-

eters. A uniform prior on the individual fixed effects would lead to improper posterior distributions for
the parameters of interest, while very diffuse priors would lead to very slow convergence of the MCMC
algorithm used for inference (see e.g. Lancaster, 2008, Ch. 7).

29 Scale mixture of normals with the weights specified as in (9) are equivalent to a t-student distribution
(see e.g. Andrews and Mallows, 1974; West, 1987; Ding, 2016). The degrees of freedom of the t-student
are equal to the hyperparameter governing the distribution of the weights ωi, ν. With growing ν the
distribution converges to a normal distribution, as less probability mass is concentrated at the tails
of the distribution. The prior for the weights in the scale mixture of normals, ωi, together with the
prior for the components of the variance matrix Σ that we will define below, imply a form of cross-
sectional heteroscedasticity of the gamma type (Andrews and Mallows, 1974; Geweke, 1993; Koop,
2003, Ch. 6; Lancaster, 2008, Ch. 3). There are two main advantages of modeling the problem in
terms of scale mixture of normals instead of as a t-student distribution. The first one is that the type
of heteroscedasticity, cross-sectional in our case, can be explicitly stated. The second is that it is less
computational demanding for the numerical algorithm to estimate the posterior distributions of the
parameters.
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the density function of ν is centered at a mean of 25, giving substantial prior weight both to

fat-tailed error distributions (ν < 10) and error distributions which are effectively Normal

(ν > 40). The estimation of ν renders the specification in (1)–(3) rather flexible. Small

values of ν will yield heteroscedasticity-robust parameter estimates, while as ν increases

the errors’ distribution will approach normality (homoscedasticity). We truncate the prior

for ν such that it is contained in the interval [3, 60].30

In order to complete the prior for the covariance matrix in (3), we propose a Cholesky-

based prior for Σ. Lopes and Polson (2014) have shown the better performance of this type

of prior compared to the more widely used approach of specifying an inverted Wishart prior

for Σ for IV-models in the context of normal-distributed errors.31 More specifically, the

components of the error vector are modeled based on the recursive conditional regressions

arising from the Cholesky decomposition of Σ = ADA′, such that D = diag(Σ1|2,Σ22)

and A is an upper triangular matrix with ones in the main diagonal and upper triangular

component a12 = Σ12/Σ22. However, the specific modelization of heteroscedasticity by

means of scale mixture of normals requires taking into consideration the effect of the

Cholesky-rotation in the individual-specific term of the variance (see Ding, 2016).32 Thus,

equation (3) can be re-written in recursive conditional form, using the specification of the

conditionals of a multivariate scale mixture of normals.

ε1|2,it ∼ N(a12ε2,it,Σ1|2ω1|2,i) (12)

ε2,it ∼ N(0,Σ22ω2,i), (13)

where Σ11 = Σ1|2+Σ2
12/Σ22. We must specify priors for Σ22, the conditional variance Σ1|2,

the parameter a12, which calibrates the strength of the correlation between ε1,it and ε2,it,

30 We regard the priors for the parameters of interest (β, π0, π1, λj , δt, αiv, βiv, αi, βj) as informative.
Geweke (1993) shows that under informative (normal) priors for the slopes, both the first and the
second moments of the slopes exist. When the priors of the slopes are uninformative, ν > 2 ensures
existence of the first moments, while ν > 4 ensures existence of the second moments. Thus, the trunca-
tion defined contains roughly 80% of the density around the mean of the prior, while ensuring existence
of first moments even in the case of noninformative priors for the parameters of interest.

31 We explain the derivation of the IV-prior in terms of covariance matrices because this is common in the
literature, though the specification of the priors is in terms of precisions, as carried out in the software.
Alternatively, we could use an inverted Wishart prior for Σ, Σ ∼ IW (v0,Σ0), with parameters v0 and
Σ0. Priors for covariance matrices and variances have usually been addressed by means of inverted
Wishart and inverted Gamma distributions, respectively, while Wishart or Gamma distributions have
been used as priors for precision matrices and precisions. Wishart priors have been extensively used
in the framework of Bayesian instrumental variable models under normal-distributed errors (see e.g.
Kleibergen and Zivot, 2003; Lancaster, 2008, Ch. 8; Rossi, 2005).

32 Ding (2016) used the representation of a multivariate t-student distribution as a scale mixture of mul-
tivariate normals to derive the conditional distribution of the multivariate t-student, which can be
represented by the conditional normal distribution times the conditional distribution of the weights.
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as well as the weights in the instrumental, ω2,i, and in the main equation conditional on

the instrumental equation, ω1|2,i. We assign Σ−122 and Σ−11|2 a gamma prior with shape and

scale parameters a, b = 0.001 so that we remain uninformative about the precision of the

model. a12 follows a normal prior centered at zero and with precision τ = 0.2. Finally, the

priors for ω−12,i and ω−11|2,i also follow a gamma distribution with hyperparameter ν, where

dm = ε′1iΣ
−1
11 ε1i is the square Mahalanobis distance in the instrumental equation, on which

the main equation is conditioned.

Σ−122 ,Σ
−1
1|2 ∼ Γ(a, b) (14)

a12 ∼ N(0, τ) (15)

ω
−1
2,i ∼ Γ(ν/2, ν/2) (16)

ω
−1
1|2,i ∼ Γ((ν + 1)/2, (ν + dm)/2), (17)

The relationship between the location and the rate parameters of the gamma priors in

(16) and (17) deserves special attention: The location parameter of ω
−1
1|2,i has increased

by 1/2 as compared to the location parameter governing ω
−1
2,i , what reduces the heavy-

tailedness of the (conditional) main equation. The rate parameter in (17), (ν+dm)/2, will

be larger in comparison with (16), since dm is typically larger than one, what increases the

dispersion of the distribution of individuals’ variances in the (conditional) main equation.

That is, the more extreme the values of the endogenous variable are, the more dispersive is

the conditional distribution of the explained variable in the (conditional) main equation.

A Markov Chain Monte Carlo (MCMC) algorithm is used to carry out Bayesian in-

ference. Gibbs-sampling can be applied to all priors specified, including the SSVS

prior, equations (7)-(8), the individual-specific weights and the Cholesky-based pri-

ors for covariance of the error terms, equations (14)-(17), and the degrees of free-

dom parameter, equations (10)-(11).33 The vector of parameters to estimate is

P = (β, π0, π1, λr, δt, αi, αiv, βiv, βj , γj , ν, ω
−1
2,i , ω

−1
1|2,i,Σ

−1
22 ,Σ

−1
1|2, a12). We implement three

Markov chains from which, after a burn-in of 7.5 · 105 draws, we retain a posterior sample

of 7.5 ·105 draws each.34 We apply a thinning of 3, ending up with a mixed posterior sam-

ple of 7.5 · 105 draws. We average across the posterior sample to calculate the posterior

means, standard errors and quantiles of the coefficients, and the posterior inclusion prob-

abilities (PIP) of the coefficients associated with specific group convergence. The PIPs of

33 See George and McCulloch (1993) for details on the Gibbs sampler for the SSVS prior, and Lopes and
Polson (2014) for the details of the Gibbs sampling for IV-estimation in the context of the normal
distribution.

34 That was sufficient for the chains to show mixing and the estimates of the coefficients to convergence
to their ergodic distribution.
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the coefficients for group convergence show the posterior probability of observing specific

dynamics associated with those groups.

The model proposed is a dynamic panel model. Nickell (1981) showed that incidental

parameters yield inconsistent OLS or Maximum Likelihood (ML) estimates in dynamic

panels with short time dimension. The phenomenon is a consequence of having a lim-

ited number of observations from which each incidental (individual-specific) parameter is

estimated, which in turn contaminates the estimation of the common parameters and,

in particular, of the dynamic (autoregressive) parameter.35 The literature has proposed

alternative estimators with the aim to correct Nickell (1981) bias such as IV estimators,

generalized method of moments (GMM) estimators, analytical corrections for the least

squares dummy variable (LSDV) estimator, and bias-corrected estimators based on it-

erative bootstrapping (see Everaert and Pozzi, 2007, for a review of these estimators).

Maddala and Hu (1996) and Hsiao et al. (1999) showed that the Bayesian approach per-

forms fairly well in the context of dynamic panels when T is small, in comparison with

some classical estimators.

Our posterior inference is based on the mean of the mixed posterior sample resulting

from the Gibbs sample after thinning. In addition, it is based on informative priors.

Therefore, we expect that our posterior estimates do not suffer from considerable bias.36

A simulation exercise under homoscedasticity and heteroscedasticity confirmed that the

Bayesian estimator resulted in substantial bias reduction. The performance of the Bayesian

estimator was comparable to, and sometimes outperformed, the performance of difference-

GMM (Arellano and Bond, 1991), system-GMM (Blundell and Bond, 1998), an extension

of Kiviet’s (1995) bias corrected estimator (see Bruno, 2005), and De Vos et al.’s (2015)

bootstrap-based bias correction.37

Finally, as a robustness check, we also estimate an alternative (homoscedastic) model

where the priors in equations (3), (12), and (13) are replaced, respectively, by

35 The concept of incidental parameter and the problem of limited information to estimate incidental
parameters was first defined by Neyman and Scott (1948). Lancaster (2000) and Moon et al. (2015)
offer rigurous treatments of the incidental parameters problem.

36 Several authors have shown the connection between the non-parametric bootstrap, the parametric
(Bayesian) bootstrap and MCMC, respectively (see e.g. Rubin, 1981; Efron, 1982; Newton and Raftery,
1994; Hastie et al., 2009, Ch, 8; and Efron, 2011).

37 The results from our simulations are available from the authors upon request. These simulations
did not include the null of endogeneity between explained and explanatory variables and thus do not
introduce an IV structure in the model. A more detailed simulation-based analysis of the Bayesian
estimator in comparison with alternative dynamic panel estimators can be found in Fernández-Amador
and Oberdabernig (2018).
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(ε1,it, ε2,it) ∼ N(0,Σ) (18)

ε1|2,it ∼ N(a12ε2,it,Σ1|2) (19)

ε2,it ∼ N(0,Σ22) (20)

where again a12 = Σ12/Σ22 and the equations (16) and (17), for the priors of the individual-

specific weights in the variance parameter, as well as the equations (10) and (11) for the

prior of the degrees of freedom ν are eliminated. Therefore, the model collapses to the

Bayesian IV-model proposed by Lopes and Polson (2014). The Gibbs sampling algorithm

for estimating this model’s posterior is simplified by deleting the steps corresponding to

the parameters
{
ω−12,i , ω

−1
1|2,i

}
i=1,...,N

and ν.

5 Results

We implement two types of IV models with errors distributed as a scale mixture of normals

that differ in the inclusion or exclusion of individual-specific dummy variables (DV). The

DV-conditional heteroscedastic model includes a set of economic, political and structural

controls, and individual-specific dummy variables. It constitutes a test for (fully) con-

ditional convergence. The conditional heteroscedastic model does not include individual-

specific effects and is only conditioned on economic, political and structural variables.

This model provides evidence on a stronger assumption about convergence than the DV-

conditional heteroscedastic model, as it reflects the concept of global convergence.

Table 1 summarizes the results of the DV-conditional heteroscedastic model. The results

of the conditional heteroscedastic model (without individual-dummies) are available in

Table 2.38 The four columns of the tables report the posterior means of the parameter

estimates from the outcome (upper panel) and the instrumental equations (middle panel)

together with the R2, the PIPs of the regressors associated with specific-group conver-

gence, the half-life derived from the convergence estimates (lower panel), the posterior the

hyperparameter governing the weights ν associated with the country-specific variances,

the Deviance Information Criterion (DIC), and the number of observations of the regres-

sions for the four CO2 inventories (CO2 per capita and per value added for production and

consumption inventories). The asterisks next to the parameter estimates indicate whether

the parameter is different from zero at the 99%, 95% or 90% (equal-tailed) credible interval

(CI).

38 Furthermore, we report the results of the DV-conditional and conditional homoscedastic models (normal-
distributed errors with and without individual-dummies) in Tables A.4 and A.5 in the Appendix.
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The estimated ν turn out to be very low (between 4 and 5), pointing to the existence of

heteroscedasticity for each of the four inventories, for the specifications with and without

individual fixed effects (tables 1 and 2, respectively). The R2 are relatively high through-

out, indicating that the included regressors explain a large part of the variation in the

growth rates of all four emission inventories.39 In particular, the DV-conditional model

explains 73%–74% of the variation in growth of CO2 emissions per capita and per value

added embodied in production activities, while it accounts for 60%–66% of the variation

in the growth rate of emissions per capita and per value added embodied in consumption.

The explanatory power of the conditional model decreases to 26%–28% for production

inventories, and respectively 31% and 47% for CO2 consumption intensities and CO2 con-

sumption per capita. The difference between the R2 of the specifications underlines the

importance of country-specific steady states. However, the inspection of the DIC across

specifications lends support to both DV-conditional and conditional models as a represen-

tation of the dynamics of carbon emissions per capita and per value added.

In all specifications we instrument the growth rate of income per capita in order to account

for potential reverse causality (see Barro and Sala-i Martin, 1992). The coefficient of lagged

income per capita growth, which we use as an instrument, is positive with a CI of 99%

in each specification, indicating a high relevance of this variable. At the same time it

is exogenous, as emission growth cannot affect lagged growth rates of income per capita.

The estimate for aiv, the strength of the correlation between the errors of the instrumental

and the outcome equations is insignificant at the 90% CI for all emission inventories but

for carbon emissions per capita from consumption in the DV-conditional model.

5.1 DV-conditional convergence

For the DV-conditional convergence model in Table 1, the posterior mean of the parameter

connected to lagged emissions (the convergence parameter, β) reveals a negative effect of

lagged emissions on the average growth rate of all four emission inventories, at a CI of

99%. This provides strong evidence for convergence in all four CO2 emission inventories.

The magnitudes of the posterior mean of the convergence parameter are larger in absolute

value for production inventories than for consumption inventories.

Given the size of the convergence parameters, it is possible to calculate the time needed for

countries to halve their emissions gap towards their country-specific steady states. Assum-

39 It should be noted that Bayesian estimation does not aim at minimizing the sum of square residuals
and thus, it does not maximize the R2. However, we consider it together with the DIC when assessing
how well our models fit the data and whether they can be regarded as consistent with our data. The
DIC penalizes the number of parameters and is often regarded as a better measure of fit in the Bayesian
context than the R2.
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(1) (2) (3) (4)
CO2 pc prod. CO2 pc cons. CO2 va prod. CO2 va cons.

Outcome equation

Constant -0.4089 *** -0.4012 *** 0.2011 0.1240
Ln(emissions) -0.2009 *** -0.1741 *** -0.2269 *** -0.1372 ***
Ln(emissions)·EU -0.0001 -0.0001 -0.0005 -0.0002
Ln(emissions)·OECD -0.0004 -0.0004 0.0066 0.0004
Ln(emissions)·Annex I 0.0000 0.0000 -0.0008 -0.0124

Ln(Income pc) 0.0932 *** 0.0769 *** -0.0187 -0.0020
Income pc growth 0.8159 *** 1.5034 *** -0.4024 -0.1206
Ln(pop. density) -0.0750 *** -0.0423 -0.0189 -0.0261
Fossil rents 0.0029 ** 0.0019 0.0025 * 0.0015
Nuclear % 0.0007 * 0.0008 * 0.0005 0.0001
Fossil fuels % 0.0007 ** 0.0007 ** 0.0007 * 0.0002
Openness -0.0001 0.0000 0.0000 0.0000
Political Regime -0.0017 ** -0.0009 -0.0020 ** -0.0015 *
VA energy % 0.0003 0.0004 -0.0004 -0.0005
VA light manufacturing % 0.0008 0.0002 0.0006 0.0007
VA heavy manufacturing % -0.0004 0.0002 -0.0018 * -0.0020 *
VA textiles % 0.0026 -0.0005 0.0070 *** 0.0016
VA water services % 0.0146 * 0.0083 0.0075 0.0038
VA construction % -0.0020 * 0.0007 -0.0039 *** -0.0002
VA trade and transport % 0.0004 0.0001 0.0001 -0.0004
VA other services % 0.0006 -0.0007 0.0002 0.0004
2004 0.0244 *** 0.0291 *** -0.0058 -0.0135 **
2007 0.0064 0.0171 *** -0.0244 *** -0.0338 ***
2011 0.0119 * 0.0199 *** -0.0248 *** -0.0383 ***
2014 -0.0002 0.0102 -0.0485 *** -0.0554 ***
Individual-dummies yes yes yes yes

R2 0.7272 0.6513 0.7398 0.6055

Instrumental equation for income pc growth

Constant 0.0147 *** 0.0147 *** 0.0147 *** 0.0147 ***
Income pc growth, lagged 0.3597 *** 0.3618 *** 0.3596 *** 0.3597 ***

aiv -0.1678 -0.5926 ** 0.1366 -0.1570
R2 0.5328 0.5334 0.5328 0.5322

PIP EU 0.0100 0.0225 0.0192 0.0223
PIP OECD 0.0062 0.0185 0.1885 0.0192
PIP Annex I 0.0229 0.0032 0.0309 0.5115

Half-life 3.0907 3.6237 2.6934 4.6970

ν 4.6581 4.8148 4.6797 4.4001
DIC −3283.5 -3212.1 -3165.0 -3141.1
N 390 390 390 390

Note: * CI 90%, ** CI 95%, *** CI 99%. All variables but group dummies and income pc growth enter
in lagged values. The half-life is calculated as −ln(0.5)/−ln(1 + β) (see Allington and McCombie,
2007). The Bayesian R2 is the mean of the R2 computed for each draw q of the Markov chain (MC),
R2
q where R2

q =
∑
i,t ŷit/(

∑
i,t ŷit +

∑
i,t εit), where ŷit is the estimate of yit implied by the model and

εit = yit − ŷit (Gelman et al., 2017, see). The Deviance Information Criterion (DIC) is computed as
DIC = D̂q + V ar(Dq)/2, where Dq is the deviance measure associated with draw q in the MC (see
Spiegelhalter, 2002; Gelman et al., 2004, Ch. 7).

Table 1: Results scale-mixture of normals, DV-conditional heteroscedastic model
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ing that the average emission trajectories observed in the sample remain unchanged, the

half-life of emissions amounts to 3.1 (3.6) years for CO2 per capita production (consump-

tion) and 2.7 (4.7) years for CO2 production (consumption) per unit of value added.40

These rather fast convergence rates implied by our estimates are in line with the findings

of Westerlund and Basher (2008) and Jobert et al. (2010) for CO2 per capita from pro-

duction activities. Westerlund and Basher (2008) reported a half-life of CO2 emissions per

capita of between 3.1 and 6.1 years in a sample of developed and developing countries.41

Jobert et al. (2010) found the half-life of CO2 emissions to be between 2.2 and 3.4 years for

various OECD countries.42 Thus, our results confirm that the findings of earlier studies

covering a smaller number of countries also hold for a sample of countries comprising the

whole world.

There is no strong evidence for the existence of specific convergence dynamics for EU,

OECD or Annex I members. The PIPs of the group-specific regressors are usually smaller

than 10%, with the exception of the group of OECD countries in the model for CO2

production per value added and the group of Annex I countries in the model for CO2

consumption per value added, with PIPs of 19% and 51%, respectively. A low PIP implies

that the estimation algorithm tends to exclude group-specific dynamics. Consequently, the

slope estimates of the group-specific regressors are very low in magnitude and not different

from zero at any of the CIs considered. Also the group-specific convergence terms with a

higher PIP fail to be different from zero at any of the specified CI.

Some of the control variables capturing economic and institutional characteristics have

significant effects on emission growth. Higher per capita income and a higher growth rate

of per capita income are associated with higher growth rates of CO2 per capita, while

CO2 intensities are not significantly affected by these variables. This highlights the role of

energy—and thus energy-derived CO2 emissions—as a necessary input for production and

consumption patterns. Population density has a negative effect on the growth rate of CO2

per capita. The opposite is true for the share of rents from fossil fuel production in GDP,

which has a positive effect on the growth rate of both CO2 production inventories. With

respect to the variables related to the composition of electricity production in an economy,

a higher share of fossil fuels or nuclear sources in total electricity production is connected

to a larger growth rate of CO2 emissions per capita, and in the case of fossil fuels also to

a higher growth rate of CO2 production intensity. Noteworthy, trade openness does not

40 The half-life provides an indication of the speed of convergence. It is defined as the time required to
eliminate half of the initial gap between actual emissions levels and the steady state. The half-life is
calculated as −ln(0.5)

−ln(1+β) (see Allington and McCombie, 2007, p. 206).
41 The half-life in their sample of developed countries was estimated to lie between 4.2 and 6.2 years; this

is longer than the half-life estimated in their pooled sample including developing countries.
42 These figures correspond to estimates of conditional convergence. For unconditional convergence the

authors reported a half-life between 4 and 8.5 years.
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affect emissions growth for any of the inventories considered. More democratic regimes

are connected to lower growth rates of CO2 for all inventories but CO2 consumption per

capita, suggesting that democracy may be a channel through which citizens’ preferences

are revealed (see Farzin and Bond, 2006).43

Regarding the sectoral shares in value added, only four sectors are relevant at a CI of

at least 90%. These are heavy manufacturing, which tends to reduce the growth rate

of CO2 intensity, textiles, which increases the growth of CO2 production intensity, water

services, which are connected to higher emission growth rates for CO2 production, and

the construction sector, which lowers the growth rate of both production-based emission

inventories.44 The time-dummies are different from zero at the selected CI in most cases.

For carbon emissions per capita, they point towards a significant increase in emissions

growth in 2004 worldwide, followed by a slight decrease afterward. For CO2 per value

added, by contrast, the results indicate a global decrease in emission intensities over time.

5.2 Conditional convergence without individual-dummies

The DV-conditional model analyzed above includes individual-specific effects and is thus

concerned with convergence towards individual-specific steady-states. A stronger assump-

tion is that convergence occurs towards a common steady-state that is determined by

economic and political factors. In order to test for international convergence towards a

common level of emissions per capita or per value added, we also estimate models with-

out individual-specific effects. The results from conditional models without individual-

dummies, displayed in Table 2, show a slightly different pattern of convergence. The

convergence parameters (of lagged emissions) are still relevant at the 99% CI for all inven-

tories, but are substantially smaller in absolute values than in the DV-conditional models;

they indicate a half-life of 26 (15) years for CO2 per capita production (consumption) and

of 45 (44) years for CO2 production (consumption) intensities. Group-specific convergence

patterns remain unimportant, with PIPs that are even lower than for the DV-conditional

models (in most cases below 1%).

With regard to the control variables, some turn irrelevant for explaining emissions

growth—fossil rents, the share of nuclear sources in electricity production, and value added

43 The negative effect of democracy on emissions growth is not robust to using alternative measures
of democracy, such as the democracy measure sourced from the FSD1289 Measures of Democracy
1810–2014 database (see Finnish Social Science Data Archive, 2018) or the average of the Freedom
House indexes of political rights and civil liberties (see Freedom House, 2018). The main results are
not sensitive to these alternative specifications and are also robust to the exclusion of the democracy
variable.

44 The negative impact of the construction sector may be related to the low carbon intensity of this sector
during the period analyzed. We take the value added share of agriculture as the benchmark sector and
exclude it from the specifications in order to avoid multicollinearity.
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(1) (2) (3) (4)
CO2 pc prod. CO2 pc cons. CO2 va prod. CO2 va cons.

Outcome equation

Constant -0.3611 *** -0.4721 *** -0.0938 ** -0.0112
Ln(emissions) -0.0266 *** -0.0460 *** -0.0154 *** -0.0158 ***
Ln(emissions)·EU 0.0001 0.0000 0.0003 0.0002
Ln(emissions)·OECD 0.0002 0.0002 -0.0002 -0.0002
Ln(emissions)·Annex I -0.0002 -0.0003 0.0006 0.0002

Ln(income pc) 0.0336 *** 0.0525 *** 0.0105 ** 0.0011
Income pc growth 0.7263 *** 1.0017 *** -0.1722 0.0095
Ln(pop. density) -0.0033 * -0.0047 *** -0.0034 -0.0040 **
Fossil rents -0.0006 -0.0009 0.0002 0.0005
Nuclear % -0.0001 0.0001 0.0001 0.0001
Fossil fuels % 0.0002 * 0.0002 * 0.0001 0.0001
Openness 0.0000 0.0000 -0.0001 0.0000
Political regime -0.0011 ** -0.0008 -0.0008 -0.0004
VA energy % 0.0013 * 0.0014 ** 0.0001 -0.0002
VA light manufacturing % 0.0004 -0.0005 0.0001 -0.0001
VA heavy manufacturing % 0.0005 0.0003 -0.0003 -0.0001
VA textiles % 0.0042 *** 0.0024 ** 0.0052 *** 0.0027 **
VA water services % -0.0020 -0.0046 0.0062 -0.0051
VA construction % -0.0004 -0.0008 -0.0015 0.0002
VA trade and transport % 0.0008 0.0006 -0.0001 0.0001
VA other services % 0.0008 0.0004 -0.0003 -0.0001
2004 0.0335 *** 0.0305 *** 0.0140 * 0.0037
2007 0.0063 0.0035 0.0042 -0.0079
2011 0.0115 * 0.0083 0.0117 -0.0039
2014 -0.0017 -0.0089 -0.0013 -0.0148 **
Individual-dummies no no no no

R2 0.2757 0.4659 0.2554 0.3117

Instrumental equation for income pc growth

Constant 0.0145 *** 0.0147 *** 0.0146 *** 0.0147 ***
Income pc growth, lagged 0.3620 *** 0.3594 *** 0.3603 *** 0.3589 ***

aiv -0.0714 0.0114 -0.2114 -0.3918
R2 0.5314 0.5324 0.5319 0.5326

PIP EU 0.0029 0.0020 0.0075 0.0055
PIP OECD 0.0038 0.0095 0.0083 0.0061
PIP Annex I 0.0023 0.0056 0.0322 0.0050

Half-life 25.7100 14.7191 44.6621 43.5226

ν 3.8105 4.5663 4.2396 4.6691
DIC -3230.3 -3259.2 -3018.1 -3223.5
N 390 390 390 390

Note: * CI 90%, ** CI 95%, *** CI 99%. All variables but group dummies and income pc growth enter
in lagged values. The half-life is calculated as −ln(0.5)/−ln(1 + β) (see Allington and McCombie,
2007). The Bayesian R2 is the mean of the R2 computed for each draw q of the Markov chain (MC),
R2
q where R2

q =
∑
i,t ŷit/(

∑
i,t ŷit +

∑
i,t εit), where ŷit is the estimate of yit implied by the model and

εit = yit − ŷit (Gelman et al., 2017, see). The Deviance Information Criterion (DIC) is computed as
DIC = D̂q + V ar(Dq)/2, where Dq is the deviance measure associated with draw q in the MC (see
Spiegelhalter, 2002; Gelman et al., 2004, Ch. 7).

Table 2: Results scale-mixture of normals, conditional heteroscedastic model
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shares of heavy manufacturing, water services and construction for all inventories, as well

as political regime and the share of fossil fuels in electricity production for CO2 intensities.

Some others gain relevance, namely population density for consumption inventories, the

value added share of the energy sector for per capita emissions, and the value added share

of the textile sector for all inventories. Furthermore, income per capita is now relevant for

all inventories but CO2 consumption intensity.45

To sum up, our findings provide strong evidence for rather fast rates of convergence towards

country-specific steady states for all four CO2 inventories (DV-conditional model). Inter-

national convergence towards global steady states determined by political and economic

structures proceeds at a much slower pace (conditional model). Although some previous

studies have found evidence for group-specific convergence patterns for OECD and EU

members (e.g. Aldy, 2006; Nguyen, 2005; Ordás Criado and Grether, 2011; Panopoulou

and Pantelidis, 2009; Westerlund and Basher, 2008), none of our models provides evidence

for differences in convergence dynamics implied by membership in the OECD, EU, or An-

nex I of the Kyoto Protocol. Therefore, climate change policies of industrialized countries

such as the OECD or the EU have not been effective in accelerating emission convergence

among developed economies (see also Westerlund and Basher, 2008, who found slower

convergence for OECD countries). Furthermore, the binding commitments of the Kyoto

Protocol have been largely ineffective in accelerating emission convergence among Annex

I countries (see also Ordás Criado and Grether, 2011).46

6 Conclusion and discussion

We tested for international convergence of CO2 per capita and per value added derived

from production and consumption patterns across a global sample of countries during

1997–2014. In so doing, we put forward a Bayesian test for convergence that is robust to

cross-sectional heteroscedasticity, accounts for endogeneity between the growth rate of CO2

emissions and economic growth, and allows for the existence of group-specific convergence

among members of the EU, the OECD, and the Annex I of the Kyoto Protocol.

Our findings suggest that all four emission inventories converge towards country-specific

steady states. The short half-lives calculated show that emissions per capita as well as

45 The results of the models without individual-dummies could be affected by omitted variables and should
be taken with care (see Barro and Sala-i Martin, 2004).

46 Tables A.4 and A.5 in the Appendix report the results for the models with homoscedastic errors. The
main results do not change qualitatively. The only important qualitative change is that income growth
becomes significant for emissions per value added in the DV-conditional models. The convergence
coefficient only changes slightly, though this change is amplified in the half-lives, decreasing them in
the specifications for emissions per value added in the conditional models.
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emission intensities are close to their country-specific steady states. Production-based

inventories show a shorter half-life (2.7–3.1 years) than consumption-based inventories

(3.6–4.7 years). The finding that for production inventories CO2 intensity converges faster

than CO2 per capita is in line with the results of Anjum et al. (2014). For CO2 consumption

inventories the reverse is true, what provides a first indication that, internationally, CO2

intensities converge more slowly than CO2 per capita.

In fact, a much slower pace of CO2 convergence across countries—towards global steady

states that are determined by economic and political structures—is detected for all four

emission inventories. Emissions per capita embodied in consumption show substantially

faster global conditional converge (with a half-life of 14.7 years) than emissions per capita

embodied in production (25.7 years). This is consistent with converging consumption

bundles across countries as a result of increasing globalization and the homogenization of

consumer tastes, while the slower cross-country convergence of production-based emissions

can be related to the long-run nature of structural transformations of production patterns.

Emission intensities converge towards global steady states at an even slower pace, which

is similar for production and consumption inventories (implying half-lives of 44–45 years).

The very slow pace of global convergence of emission intensities indicates that technology

transfers across countries have been rather limited and cannot explain the faster rate of

convergence of emissions per capita. Thus, the faster convergence of emissions per capita is

likely to be driven by some of the conditioning variables, possibly income growth. Various

empirical studies have shown that income and CO2 emissions are positively related (e.g.

Azomahou et al., 2006; Holtz-Eakin and Selden, 1995; Fernández-Amador et al., 2017).

To the extent that the economic crisis of 2008 has led to a decline in economic growth

in high-income countries, whereas countries with lower income levels were able to catch

up, this catch-up process could have sped up the international convergence of per capita

emissions (see also Brock and Taylor, 2010).47

Actual levels of carbon emissions have proven to be unsustainable. Our results indicate

that higher income growth is related to a higher growth-rate of emissions per capita, while

it is not connected to a decrease in emission intensities. The evidence for convergence

does not automatically imply convergence towards steady states that are sustainable,

as highlighted by Brock and Taylor (2010) and Ordás Criado et al. (2011). Moreover,

the evidence for fast country-specific convergence towards not sustainable steady states

underlines the current incompatibility between economic growth and the 2◦C target, and

the need for further abatement and mitigation policies to keep global warming under

control while maintaining reasonable economic growth rates.

47 A more detailed analysis of this mechanism is out of the scope of this paper.
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The historical responsibility for atmospheric CO2 concentrations corresponds to developed

economies. However, those economies, represented in our sample by three groups—OECD,

EU, and the countries that ratified the Annex I of the Kyoto Protocol—have not expe-

rienced faster group convergence. This lack of specific patterns of convergence among

developed economies, despite the environmental policies implemented in these countries

during the period of analysis after the Kyoto Protocol, shows the difficulties in achieving

effective agreements and policies to take action against global warming.

The slow pace of international convergence of emissions and the limited extent of interna-

tional technology diffusion pose doubts on the feasibility of the agreed sustainability tar-

gets, unless a significant change in the international institutional framework takes place,

and new, stronger abatement policies are implemented. Also, much faster transfers of

green technologies will be necessary.

The lack of a stabilization of emissions in industrialized economies at sustainable emission

levels may discourage developing economies to accept a cap on emissions. In addition,

the evidence found for country-specific steady states in emissions points to significant

transaction costs connected to the design of multilateral policy frameworks aimed at global

emissions reduction. Even though there is an urgency for multilateral approaches to fight

climate change that encompass developed and developing countries, developed economies

should foster further national environmental policies to promote carbon efficiency and less

polluting sources of energy in order to reinforce the international action against global

warming.
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N Mean Std. dev Min Max

Dependent variables

Growth CO2 pc prod. 390 0.0066 0.0513 -0.3302 0.2667
Growth CO2 pc cons. 390 0.0108 0.0500 -0.1884 0.2156
Growth CO2 va prod. 390 -0.0207 0.0577 -0.3572 0.2930
Growth CO2 va cons. 390 -0.0167 0.0431 -0.2388 0.2311

Control variables

Ln(CO2 pc prod.) 390 1.2085 1.4009 -2.6795 3.5778
Ln(CO2 pc cons.) 390 1.3226 1.3019 -2.0201 3.6115
Ln(CO2 va prod.) 390 -0.1894 0.7446 -1.9935 1.8894
Ln(CO2 va cons.) 390 -0.0923 0.5449 -1.1193 1.6246
EU 390 0.3128 0.4642 0.0000 1.0000
OECD 390 0.3872 0.4877 0.0000 1.0000
Annex I 390 0.3718 0.4839 0.0000 1.0000
Ln(income pc) 390 9.4981 1.1013 6.2054 11.4913
Income pc growth 390 0.0260 0.0267 -0.1240 0.1194
Income pc growth lagged 390 0.0278 0.0273 -0.1240 0.1194
Ln(pop. density) 390 4.3048 1.4577 0.8798 8.9042
Openness 390 0.8212 0.4753 0.1761 3.2739
Political regime 390 6.2256 5.1222 -7.0000 10.0000
Nuclear % 390 0.0984 0.1789 0.0000 0.8357
Fossil % 390 0.5807 0.3060 0.0008 1.0000
Fossil rents % 390 0.0275 0.0584 0.0000 0.4056
VA agriculture % 390 0.0908 0.0883 0.0017 0.5529
VA energy % 390 0.0688 0.0736 0.0000 0.4313
VA light manufacturing % 390 0.0757 0.0376 0.0246 0.3135
VA heavy manufacturing % 390 0.1063 0.0529 0.0098 0.4428
VA textiles % 390 0.0208 0.0193 0.0000 0.1267
VA water services % 390 0.0037 0.0031 0.0000 0.0272
VA construction % 390 0.0618 0.0255 0.0023 0.1742
VA trade and transport % 390 0.1901 0.0663 0.0243 0.5138
VA other services % 390 0.3820 0.1193 0.1379 0.6299

Table A.3: Descriptive statistics
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(1) (2) (3) (4)
CO2 pc prod. CO2 pc cons. CO2 va prod. CO2 va cons.

Outcome equation

Constant -0.3886 *** -0.3977 *** 0.1904 0.1299
Ln(emissions) -0.2080 *** -0.1792 *** -0.2161 *** -0.1276 ***
Ln(emissions)·EU -0.0004 -0.0010 -0.0005 -0.0004
Ln(emissions)·OECD 0.0000 -0.0002 0.0034 0.0003
Ln(emissions)·Annex I -0.0003 0.0007 0.0001 -0.0013

Ln(income pc) 0.0982 *** 0.0790 *** -0.0215 -0.0004
Income pc growth 0.6360 ** 1.1148 *** -0.6090 ** -0.5573 **
Ln(pop. density) -0.0877 *** -0.0406 -0.0107 -0.0148
Fossil rents 0.0031 ** 0.0015 0.0028 * 0.0005
Nuclear % 0.0009 ** 0.0008 0.0003 0.0000
Fossil fuels % 0.0008 ** 0.0008 * 0.0004 0.0001
Openness 0.0000 0.0000 -0.0001 -0.0001
Political regime -0.0017 ** 0.0002 -0.0018 * -0.0013
VA energy % -0.0003 0.0006 -0.0002 -0.0003
VA light manufacturing % 0.0007 -0.0012 0.0007 -0.0007
VA heavy manufacturing % -0.0007 0.0005 -0.0015 -0.0026 ***
VA textiles % 0.0032 -0.0009 0.0094 *** 0.0037
VA water services % 0.0185 ** 0.0131 0.0120 0.0071
VA construction % -0.0028 *** 0.0006 -0.0045 *** -0.0002
VA trade and transport % 0.0004 -0.0002 0.0007 -0.0004
VA other services % 0.0002 -0.0010 0.0004 -0.0006
2004 0.0311 *** 0.0286 *** -0.0025 -0.0104 *
2007 0.0146 ** 0.0191 *** -0.0186 ** -0.0246 ***
2011 0.0213 *** 0.0262 *** -0.0177 ** -0.0246 ***
2014 0.0077 0.0149 -0.0436 *** -0.0448 ***
Individual-dummies yes yes yes yes

R2 0.7382 0.6513 0.7343 0.5941

Instrumental equation for income pc growth

Constant 0.0163 *** 0.0163 *** 0.0163 *** 0.0163 ***
Income pc growth, lagged 0.3502 *** 0.3513 *** 0.3506 *** 0.3504 ***

aiv -0.0285 -0.2378 0.2592 0.2097
R2 0.5546 0.5547 0.5546 0.5546

PIP EU 0.0069 0.0086 0.0190 0.0168
PIP OECD 0.0087 0.0257 0.1069 0.0368
PIP Annex I 0.0064 0.0040 0.0155 0.0546

Half-life 2.9724 3.5100 2.8469 5.0777

DIC -3298.3 -3172.3 -3164.3 -3187.2
N 390 390 390 390

Note: * CI 90%, ** CI 95%, *** CI 99%. All variables but group dummies and income pc growth enter
in lagged values. The half-life is calculated as −ln(0.5)/−ln(1 + β) (see Allington and McCombie,
2007). The Bayesian R2 is the mean of the R2 computed for each draw q of the Markov chain (MC),
R2
q where R2

q =
∑
i,t ŷit/(

∑
i,t ŷit +

∑
i,t εit), where ŷit is the estimate of yit implied by the model and

εit = yit − ŷit (Gelman et al., 2017, see). The Deviance Information Criterion (DIC) is computed as
DIC = D̂q + V ar(Dq)/2, where Dq is the deviance measure associated with draw q in the MC (see
Spiegelhalter, 2002; Gelman et al., 2004, Ch. 7).

Table A.4: Results normal distribution, DV-conditional homoscedastic model
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(1) (2) (3) (4)
CO2 pc prod. CO2 pc cons. CO2 va prod. CO2 va cons.

Outcome equation

Constant -0.4482 *** -0.4902 *** -0.0866 ** -0.0182
Ln(emissions) -0.0345 *** -0.0478 *** -0.0221 *** -0.0184 ***
Ln(emissions)·EU 0.0001 0.0001 0.0002 0.0002
Ln(emissions)·OECD 0.0006 0.0005 0.0001 0.0003
Ln(emissions)·Annex I 0.0005 0.0001 -0.0001 0.0002

Ln(income pc) 0.0467 *** 0.0544 *** 0.0123 ** 0.0036
Income pc growth 0.9594 *** 0.9677 *** 0.0951 0.0197
Ln(pop. density) -0.0057 *** -0.0045 ** -0.0080 *** -0.0059 ***
Fossil rents 0.0002 -0.0008 0.0009 0.0004
Nuclear % -0.0001 0.0000 0.0001 0.0001
Fossil fuels % 0.0003 ** 0.0002 * 0.0002 * 0.0002 *
Openness -0.0001 0.0000 -0.0001 * -0.0001
Political regime -0.0015 ** -0.0005 -0.0016 ** -0.0010 *
VA energy % 0.0002 0.0013 * -0.0011 -0.0004
VA light manufacturing % -0.0002 -0.0006 -0.0004 -0.0002
VA heavy manufacturing % 0.0006 0.0003 -0.0003 -0.0004
VA textiles % 0.0051 *** 0.0029 ** 0.0059 *** 0.0028 *
VA water services % -0.0015 -0.0033 0.0035 -0.0056
VA construction % -0.0011 -0.0005 -0.0022 * 0.0004
VA trade and transport % 0.0005 0.0003 0.0000 0.0000
VA other services % 0.0006 0.0004 -0.0005 -0.0002
2004 0.0476 *** 0.0339 *** 0.0239 *** 0.0051
2007 0.0111 0.0085 0.0120 -0.0051
2011 0.0178 ** 0.0145 ** 0.0185 * -0.0025
2014 0.0028 -0.0053 0.0055 -0.0133 *
Individual-dummies no no no no

R2 0.3669 0.4745 0.3170 0.3311

Instrumental equation for income pc growth

Constant 0.0163 *** 0.0163 *** 0.0163 *** 0.0163 ***
Income pc growth, lagged 0.3504 *** 0.3500 *** 0.3506 *** 0.3503 ***

aiv -0.2363 0.0405 *** -0.5033 -0.4178
R2 0.5546 0.5545 0.5546 0.5546

PIP EU 0.0084 0.0048 0.0104 0.0064
PIP OECD 0.0032 0.0064 0.0097 0.0074
PIP Annex I 0.0034 0.0053 0.0144 0.0063

Half-life 19.7426 14.1516 31.0163 37.3234

DIC -3096.9 -3184.0 -2933.1 -3161.6
N 390 390 390 390

Note: * CI 90%, ** CI 95%, *** CI 99%. All variables but group dummies and income pc growth enter
in lagged values. The half-life is calculated as −ln(0.5)/−ln(1 + β) (see Allington and McCombie,
2007). The Bayesian R2 is the mean of the R2 computed for each draw q of the Markov chain (MC),
R2
q where R2

q =
∑
i,t ŷit/(

∑
i,t ŷit +

∑
i,t εit), where ŷit is the estimate of yit implied by the model and

εit = yit − ŷit (Gelman et al., 2017, see). The Deviance Information Criterion (DIC) is computed as
DIC = D̂q + V ar(Dq)/2, where Dq is the deviance measure associated with draw q in the MC (see
Spiegelhalter, 2002; Gelman et al., 2004, Ch. 7).

Table A.5: Results normal distribution, conditional homoscedastic model
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