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Abstract 

Throughout this chapter we will study the general framework for program evaluation, with the aim 

of assessing the causal effect of a determine program, such as the impact of job-training program 

on earnings. The objective of this chapter is to provide the research with enough tools to think of 

the problem of causality in a consistent way and offer the reader the menu of sources of causal 

inference and the most up-to-date techniques to estimate treatment effects. This Chapter is only 

introductory, containing many references to encourage further readings on the field and should be 

accessible for those readers with a basic knowledge of econometrics and statistics. 
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Throughout this chapter we will study the general framework for program evaluation, with the aim 
of assessing the causal effect of a determine program, such as the impact of job-training program on 
earnings. The objective of this chapter is to provide the research with enough tools to think of the 
problem of causality in a consistent way and offer the reader the menu of sources of causal 
inference and the most up-to-date techniques to estimate treatment effects. This Chapter is only 
introductory, containing many references to encourage further readings on the field and should be 
accessible for those readers with a basic knowledge of econometrics and statistics. 

We will start formulating the following problem, and throughout the Chapter we will develop 
different approaches to assess it. Consider the case of evaluating the effects of a job-training 
program on relevant outcomes, such as earnings of the participants. The question we are interested 
in, is quantifying the improvement on earnings that the training engendered.  If the earnings of the 
workers who received the training increased after the treatment, could we affirm that it was only the 
training that caused the improvement in his income? In general we can relate a presumed effect with 
more than one cause. Many factors are usually necessary for an effect to occur, but we seldom 
know all of them and how they relate to each other. Therefore, causal relationships are not 
deterministic, but only increase the probability that an effect will take place. In social sciences 
confusion tends to occur especially when we face situations with many correlated variables. But 
correlation does not prove causation, because we do not know what event happened first. And also, 
there are often other variables affecting both presumed cause and effect, which tend to make the 
isolation of causal relations much more complicated. Furthermore, we must be aware that causal 
relations occur under some conditions but seldom universally in every time, space or populations. 
Consequently, we must be very careful when trying to generalize a causal relationship; which. 

The starting point is the same for both analyses: we have a sample of observations drawn from an 
unknown distribution. The aim is to find parameters of that distribution, through different 
estimation techniques. In the standard analysis, once we find such parameters, we can infer 
association among variables, estimate the likelihood of past and future events, as well as update the 
likelihood of events in light of new evidence of new measurement. This is done under the 
assumption that experimental conditions remain the same, because there is no hint in a distribution 
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function that tells us how that distribution would differ if external conditions were to change. In 
fact, the laws of probability theory do not dictate how one property of a distribution ought to change 
when another property is modified. 

Why is causal analysis different? It goes further, thus its aim is to infer aspects of the data 
generation process. Then, we can be able to deduce not only the likelihood of events under static 
conditions, but also the dynamics of events under changing conditions. This capability includes: 
predicting the effects of interventions of spontaneous changes; identifying causes of reported events 
and assessing responsibility and attribution for occurrence of events (i.e. if an event was necessary 
or sufficient for the occurrence of another). 

In conclusion, in the one hand, probability theory deals with static conditions; it allows us to decide 
whether two events are mutually correlated, or dependent. This association implies at most that 
when we find one of the events, we can expect to encounter the other. On the other hand, causal 
analysis deals with changing conditions. Generally, association is circumstantial evidence for 
causation. However, this evidence is not sufficient because there may be some hidden confounding 
factors which affect both the cause and the effect. 

Therefore, we would ideally need to know the earnings that the participants would have had in the 
absence of the program, and compare this amount with the earnings that they have after 
participating. As a single individual cannot belong to the treatment group and the control group, one 
of the potential outcomes will be observable, whereas the other will be unobservable 
(counterfactual). In terms of our example of the training program, we will know what the outcome 
of a man who participated in the job training program is, but we will never know what his earnings 
would have been, hadn´t he participated. Because it is impossible to observe both outcomes for the 
same individual, the individual-level causal effect cannot be observed or calculated. This fact that 
we cannot infer the effect of treatment because we do not have the counterfactual evidence is 
known as the Fundamental Problem of Causal Inference. However, the existence of this problem 
does not mean that causal inference is impossible. Holland (1986) states that there are two 
solutions: the scientific solution and the statistical solution.  

On the one hand, the scientific solution is the approach employed in a laboratory setting, where the 
scientist performs an experiment in which he can introduce a treatment, holding all the other factors 
at their previous states and levels, so that he can claim that the change in the outcome he measures 
is due to the treatment. This claim relies on the plausibility and reasonability of the homogeneity 
assumption. On the other hand, the starting point of the statistical solution is recognizing that 
although individual-unit effect is unobservable, looking at the whole population (or determined sub-
populations) can allow us to gain knowledge about the average effect of the treatment. 

What is key to understand is that dealing with causality involves asking ourselves “what if” 
questions, which require building a counterfactual. Throughout this chapter, we will go through the 
most common and up-to-date techniques that are employed to build such counterfactuals in order to 
identify causal parameters. This Chapter on program evaluation should be taken as an introduction 
to the main practices in the field. 
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We will emphasize the validity of the inferences provided by the different designs we study. The 
concept of validity is very important and refers to the extent in which the inference can be claimed 
to be true. Saying that something is valid imply a judgment about how supportive is the relevant 
evidence we have available, of that inference being true. Validity, as any human-made judgment, is 
subjective and relative. Validity has different degrees, it is not absolute. It is usually constructed 
from empirical findings, consistency with former accepted theories. We cannot be absolutely certain 
that inferences drawn from a single experiment are correct or that the other inferences are false. 
Validity is a property of inferences, not of the designs, techniques or estimation methods. A 
determined design draws some inferences that may be more or less valid according to the 
circumstances. 

We can divide validity into two types: external and internal. External Validity makes reference to 
the extent that inference can be generalized from a sample of units with determined settings and 
conditions, to other units and contexts. The questions of external validity are about the 
generalization of the causal relationship, not only to different units or settings that participated in 
the experiments, but also to other persons, treatments or outcomes that were not involved in the 
experiment. For instance, the policymaker may be interested in the extent that the program for 
reducing poverty in a village located in a certain province will be effective in other poor locations; 
or whether the training program for random selected adults that proved to raise income in a certain 
percent will have the same effects on younger volunteers. We will see that some sources of causal 
inference provide estimates that are more generalizable than others. 

It is clear that the threats to generalizing the causal relationship to various units, treatments, 
outcomes and settings arise when there is an interaction between the causal relationship and the 
varying factors. The interactions threatening external validity may be both those who prove to be 
statistically significant, but also the ones that are theoretical or practical. 

Internal Validity refers to whether the observed correlation between two variables –the presumed 
treatment and the presumed outcome- is only the result of a causal relationship from the treatment 
variable to the outcome one. To support the inference, we should be able to show that the presumed 
caused preceded the effect chronologically, and the effect could not be the result of any other factor 
than the presumed cause. There are threats to this claim about causal knowledge: i) Ambiguous 
Temporal Sequence: we cannot be sure that the presumed caused occurred before the effect; ii) 
Selection into Treatment and Control Groups: this the problem of confounders, i.e. in the presence 
of another variable affecting both outcomes and selection to treatment, we cannot isolate the causal 
parameter; iii) Attrition:  units belonging to the original sample in an experiment leave it before the 
measurement of outcomes; iv) Other sources: any other factor that affects outcomes and is not the 
treatment is a threat to internal validity. For example, if we change the measurement instruments, or 
if the way in which we test outcomes affects them. 

As regards the sources of causal inference, we will first focus on social experiments, in which the 
researcher assigns units to a treatment group (which will receive an intervention) or to a control 
group (that will not be intervened) randomly or by chance (for example, by the toss of a coin or 
using a table of random numbers). When random assignment is correctly implemented, it generates 
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groups of units that are probabilistically similar to each other on average, except for the treatment 
status. 

Another source of data is observational studies, in which the assignment to treatment is decided by 
the units studied. For the researcher selection to treatment is given and he only has to watch what 
happens and try to design a way of isolating causal relationships. In Rosenbaum (2002) words: an 
observational study is an empiric investigation of treatments, policies, or exposures and the effects 
they cause, but it differs from an experiment in that the investigator cannot control the assignment 
of treatments to subjects. 

With observational (non-experimental) data, the main problem while making causal inferences is 
confounders. When we try to separate the cause of some effect, we find that in non-experimental 
studies there are so many variables interacting, that identifying a causal relationship is not 
straightforward.   

Observational studies can sometimes be susceptible of a quasi-experimental design, when the 
researcher can manipulate the treatment, but the selection into groups is still given (by the units 
affected, laws, bureaucrats, teachers, nature, or whatever).  

Apart from controlled experiments and observational studies, there is a third type of source of data 
for causal inference: natural experiments. They are observational studies where assignment to 
treatment or control is “as if” randomized by nature. That is to say, that the researcher does not 
manipulate the context to generate a “treatment” and a “control” group; but based on reasonable 
grounds he can claim that the assignment of subjects to the groups is random or “as if” random.  

A natural experiment can be a naturally occurring event such as an earthquake, a flood; or a policy 
change (a new law) that has nothing to do with the outcome we evaluate but it can be used to 
contrast the event with a comparison condition. So, natural experiments describe a naturally-
occurring contrast between a treatment and a comparison condition. 

In conclusion, randomized controlled experiments are the ones that minimize the problem of 
confounding. However, though they seem ideal, they are not always capable of being held for 
different reasons and they could have other weaknesses we will study in the next sections. With 
observational studies, there should be a rigorous study of all the variables interacting in order to 
make sure that confounding variables does not impede the identification of the causal relation we 
look for. We will deal with the pros and cons of randomized experiments and different types of 
quasi-experiments throughout the Chapter. 
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The Potential Outcomes Model 

The model commonly used in social sciences to study causal relationships was formalized by 
Donald Rubin (1974) after the original work of Neyman on experimental designs (1923). The 
Neyman-Rubin model is usually referred to as the potential outcome or the counterfactual model.  

To illustrate the model, consider our example of the job-training program for a certain target of 
adults in a determined city (population of interest). Each person can volunteer to receive the 
program (constituting the treatment group) or not (control group). After the program is held, we are 
interested in the effect of it on earnings. The key issue is that any individual of the population can 
potentially belong to any of the two groups, as any individual can potentially be exposed to 
treatment. 

Consequently, if we denote the treatment status Tu (binary variable equal to 1 if the unit is treated 
and to 0 otherwise), Yu  is the outcome of interest of the individual unit u, ε is the unobservable error 
term and β is a constant, after treatment takes place, there are two potential outcomes: 

Yu1 =  β + δu + εu         if    Tu = 1 

Yu0  =  β + εu                if    Tu= 0 

So, each unit u in the population of interest has a theoretical potential outcome under each possible 
treatment status. The individual-level causal effect of the treatment is defined as the difference 
between the potential outcomes: 

δu  = Yu0 - Yu1 

As a single individual cannot belong to the treatment group and the control group, one of the 
potential outcomes will be observable, whereas the other will be unobservable (counterfactual). In 
terms of our example of the training program, we will know what the outcome of a man who 
participated in the job training program is, but we will never know what his earnings would have 
been, hadn´t he participated. Then, the observable outcome can be expressed as: 

Yu  =  (1- Tu ) Yu0  +  Tu  Yu1 

So that Yu  =  β + δu Tu + εu  

Notice that the effect of the treatment can be heterogeneous in the population, so that different 
groups of individuals, for example those who enrol in the job-training program (treated) and those 
who do not (untreated) may get different gains from the treatment. In fact, there is a whole 
distribution of the treatment effect. The methods we will develop in this Chapter, aim at estimating 
some feature of that distribution. For example, the mean of the population distribution of δu, is the 
Average Treatment Effect (ATE): 

ΑΤΕ = Ε[δu] 
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Another parameter of interest, in the frame of heterogeneous effects, is the Average Treatment 
Effect on the Treated. This parameter is sometimes more important than the effect of the treatment 
on an individual taken randomly from the whole population. The reason is that if we consider, for 
example, the job training program targeted to some group of the population, it does not really matter 
the effect of that program for people that are not likely to receive it (high skilled workers with stable 
job, for instance). Therefore, for policy evaluation, most of the times, it is more important to have 
an estimate of ATOT than of ATE. 

ΑΤΟΤ = Ε[δu|Tu=1] 

Notice that when we referred to the outcome of unit u under any of the treatment status, we did not 
even mention what the treatment situation of the other units was. Implicitly, we assumed that 
treatment of unit u affects only the outcome of unit u. This assumption is called the Stable Unit 
Treatment Value Assumption (SUTVA). In the words of Rubin (1961), SUTVA is simply the a 
priori assumption that the value of Y for unit u when exposed to treatment T will be the same no 
matter what mechanism is used to assign treatment T  to unit u and no matter what treatments the 
other units receive. 

SUTVA is violated when there are general equilibrium effects, externalities or spill over of 
treatments. For example, in the case of the effect on wages of a job training program in a small city, 
we may think that as more people receive the treatment if the number of jobs is fixed, there will be 
an upwards pressure on wages. If this is the case, wages of non-treated will also be affected by the 
treatment.  In the case of a large city, SUTVA would be more reasonable because the wage 
structure will not be affected by a small program.  

Another situation in which SUTVA does not hold is in the case of externalities. Miguel and Kremer 
(2004) study the case of the presence of externalities in medical treatments against intestinal 
helminths, which infect more than one-quarter of the world’s population with severe consequences 
in the children’s health and in turn affect their as school attendance. The authors claim that studies 
in which medical treatment –for illnesses with high re-infection rate- is randomized at the individual 
level potentially doubly underestimate the benefits of treatment, missing externality benefits to the 
comparison group from reduced disease transmission, and therefore also underestimating benefits 
for the treatment group.  They evaluate the Primary School Deworming Project (PSDP) in the Busia 
district of rural Kenya, in which a mass deworming treatment was randomly phased into rural 
primary schools with high prevalence of worm infections. The treatment was randomly allocated to 
schools, rather than to individuals, allowing estimation of overall program effects. Schools were 
randomly assigned to one of three groups of 25 schools each. Group 1 was given treatment starting 
from 1998, while Group 2 was incorporated in 1999 and Group 3 in 2001. Schools with infection 
rates over 50 percent were mass treated with the appropriate drug regime. 

The authors want to identify the total effect of the program on treated and untreated individuals. 
This means it is necessary to identify three effects: the effect of the treatment on treated children; 
the effect of the intervention on untreated children in treatment schools; and the effect of the 
intervention on untreated children in control groups. Thus, there are two external effects that need 
to be identified: within-school and cross-school externalities. As regards the first external effect, it 
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is measured by the difference in outcomes between untreated students in treatment schools and 
students in treated schools. Since treatment assignment within a school was not assigned randomly, 
there cannot be an experimental estimate. The claim made by the authors is that the group who did 
not take up treatment in Group 2 schools in 1999 provides a good counterpart to the subset of Group 
1 pupils who did not take up treatment in 1998 (noncompliers in 1998 and 1999 are very similar in 
terms of their pre-treatment characteristics). In order to account for the second externality (cross-
school), the authors exploit the variation in the density of children receiving treatment in nearby 
schools. If there are any schools close by, we would expect individual worm loads to be higher, 
because of higher possibilities of reinfection. This effect would depend on the number of students in 
those schools, and on their distance.  

The authors conclude that regression estimates show a large impact of the program on infection 
rates. The program has the direct effect of reducing the incidence of moderate-heavy infections by 
25 percentage points (p.p.) The estimated externality is high as well, so SUTVA would not hold, 
with infection rates being 26 p.p. lower for every 1000 students in treatment schools within 3 km, 
and 14 p.p. for every 1000 students in treatment schools between 3 and 6 km away. When breaking 
down the impact in treatment schools, the direct effect of treatment is a 14 p.p. reduction, while the 
within-school externality accounts for a further reduction of 12 p.p. They find a large and 
statistically significant effect of the program on school participation especially for younger children 
(increase of 10 p.p.). Overall, the authors estimate that treating one child led to an increase in school 
participation of 0.14 years. The authors find no change in school performance associated with the 
program.  

 

Alternative Frameworks: Potential Outcomes Model and Structural Models 

As we mentioned, although we cannot recover the individual level treatment effect, we can estimate 
some features of the distribution of the treatment effect in the framework of the potential outcomes 
model. One main advantage of this setting is that it enables the definition of the causal effect 
without specifying the assignment mechanism and does not need any functional form or 
distributional assumption. 

 In contrast, there is another approach first developed by geneticists (Wright 1921) and economist 
(Haavelmo 1943), that consists on writing down structural models, which give functional forms to 
all the decisions involved in the problem we are analyzing and as a result allow us to identify all the 
relevant parameters of the model and the distribution of heterogeneity. 

Structural equation models rely on the specification of systems of equations with parameters and 
variables that attempt to capture behavioural relationships and specify the causal links between 
variables.  

Consider a model M of three equations: 

z = fz(w) 
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x = fx(z, ν) 

y = fy(x, u)  

Notice that y is a function of x and u, but at the same time, x is a function of v and z which depends 
on w. Finally, outcome y depends on (u, v, w). We will try to find an expression of the effect of a 
certain intervention on y.  

Interventions are represented through a mathematical operator denoted d0(x). Here d0(x) simulates 
physical interventions by deleting certain functions from the model, replacing them by a constant X 
= x, while keeping the rest of the model unchanged.  In consequence, model M after the 
intervention is Mx, as shown in the following diagram: 

 Introducing an intervention in a Structural Model M 

z = fz(w)
x = fx(z, ν)
y = fy(x, u)

z = fz(w)
x = x0

y = fy(x, u)

d0(x0)

MX MX0

 

How can we link the introduction of an intervention in a Structural Equation Model with the 
Potential Outcomes Model? 

Consider an individual with characteristics (u, v, w). We can analyze the potential outcomes of 
variable y for the two alternative specifications of X: 

x = fx(z, ν)=fx(fz(w) , ν)

x = x0 Yx0(u, ν, w) = Yx0(u) = fy(x0, u)

Yx (u, ν, w) = Yx (u) = fy (x, u)
X 

 

 

This entity can be given a counterfactual interpretation, for it stands for the way an individual with 
characteristics (u, ν, w) would respond, had the treatment been x0, rather than the x = fx(z, ν) 
actually received by the individual.  

This interpretation of counterfactuals, cast as solutions to modified systems of equations, provides 
the conceptual and formal link between structural equation modelling and the Rubin potential-
outcome framework. It ensures us that the end results of the two approaches will be the same. Thus, 
the choice of model is strictly a matter of convenience or insight. 

To choose between them, the researcher must take into account the estimation issues concerning 
each model. When researchers in political science approach data, the counterfactual model approach 
appears more attractive if they do not know how to specify precisely the sources of randomness in 
the data or the relationships that exist between these variables. That is, the structural approach 
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requires the researcher to be precise about the determinants of potential choices and treatment 
variables and the relationships between these in real datasets.   

However, the structural modelling framework is richer because if we can assume that we know all 
the functional forms of the model, we can estimate all the structural parameters, whereas in the 
potential outcome model we would get a reduced-form model. To illustrate this point, consider a 
multi-equational model in which we can claim that there are direct and indirect effects of a variable 
t in our outcome variable Y. 

 

For example, consider the following model in which outcome Y is a function of treatment t and 
variable x.  

Y = f(x, t) 

If we want to identify the effect of treatment t, we just have to find what happens to Y once we 
control x and change t (either using derivatives or finite changes). But, if simultaneously, we know 
that X is caused by the treatment variable t, we now have a system of two equations whose variables 
x and y are jointly determined. 

Y  =  f(x, t) 

X = g(t) 

If x were determined outside the model or controlled in any way, we could hypothetically vary t, we 
will be in the same situation as before (the case of one equation). When we take the model in it 
structural form, we can see that variations in t have direct effects on Y and on X, which are called 
structural causal effects. But is we introduce changes in t, there are also indirect effects on Y 
through X (that is determined by t). 

To obtain the total effect of variations in t, we can express the structural model in its reduced-form, 
which implies that every endogenous variable (those determined within the model) depends only on 
exogenous variables, parameters or constants (not on other endogenous as allowed in the structural 
form). The reduced-form of the previous model would be: 

Y  = Y(t) 

X = X(t) 

For example, if we want to determine the effect of going to pre-primary school (t) on earnings (Y), 
we may think that attending pre-primary school (t) and the labor supply of the mother (X) affects 
earnings (Y), which constitute the first structural equation. But attending pre-primary school also 
affects the labor supply of the mother of the individual (X), represented by the second structural 
equation. Thus, pre-primary education has a direct effect on earnings and an indirect one through its 
effect on the labor supply of the mother. In the structural model we can estimate all the direct and 
indirect effects, while in the reduced-form model we can only get the total effect. 
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Estimation of the Treatment Effects 

Notice that the treatment effect can only be unbiased estimated if we assume that selection into 
treatment is independent on the potential outcomes of the unit. Or in other words, treatment 
assignment is “ignorable”.  Let´s start from the definition of ATE: 

[ ] [ ] [ ]1 0 1 0[ ] u u u u uATE E E Y Y E Y E Yδ= = − = −  

which can be unbiasedly estimated when we assume that treatment assignment is “ignorable”. What 
is equivalent to assuming that Y and T are statistically independent for u=1,…N. 

1,u uo uY Y T⊥  

Under this assumption, a consistent estimator of the average treatment effect is simply the 
difference in the sample means of the observed outcome variable Y for the observed treatment and 
control groups. 

1 0
ˆ ˆ ˆ| 1 | 0ATE u uY T Y Tδ ⎡ ⎤ ⎡ ⎤= = − =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

The ignorability assumption is very strong. Imagine that we are assigned the task of evaluating the 
impact of a job-training program which is supposed to increase the future earnings of its 
participants. After the program, we will have information about the earnings of the participants and 
we could have a sample of non-participants earnings. Does the difference of the mean earnings of 
participants and non-participants estimates the effect of the program? What effect does that estimate 
captures? To answer the question, we must know how selection into the program was done, and 
how the control group was chosen. It is natural to think that those who applied for the program have 
on average, a lower income than those who did not. So there is a baseline difference between the 
pre-treatment incomes of both groups. This means that a simple mean difference estimator will not 
capture the effect of the treatment on the treated. We can also imagine that those who applied for 
the program had a poorer educational attainment. Therefore the factual future earnings of the 
control group will be far from the counterfactual post-treatment earnings of the participants in the 
absence of treatment. The post-program earnings of the (often more qualified) non-participants will 
be probably higher than the future income of the participants hadn´t they participated in the 
program. Then, the potential gains from the program will be higher for the applicants than for the 
more-qualified non-applicants, which mean that the effect of treatment is heterogeneous, so we are 
in the presence of selection on the potential gains. Then, ATE will not be consistently estimated by 
the previous expression (it will be underestimated), even if we consider an homogenous effect for 
treated and non-treated. In addition to this, if we assume that there is treatment heterogeneity, we 
may think that those who volunteer are the ones whose expected gains from the treatment are 
higher, so there will be a selection on potential gains that will also make the estimation of ATE 
inconsistent.  
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To clarify the selection problem underlying in the estimation of the effect of treatment, let’s 
consider the linear model again: 

Yu  =  β + δu Tu + εu 

Note that the previous expression is slightly different from the linear regression model set-up, 
because our causal effect parameter has an individual subscript (we allow for heterogeneous 
treatment effect). We can re-write this expression in terms of the homogenous effect ATE: 

Yu  =  β + δ ΑΤΕ Tu + εu + δu Tu - δ ΑΤΕ Tu = β + δ ΑΤΕ Tu +[ εu + δu Tu - δ ΑΤΕ Tu] = 

Yu  =  β + δ ΑΤΕ Tu + vu  

vu contains all the unobserved terms. In this framework, the OLS estimation of δ ΑΤΕ will be 
consistent if the assignment rule determining Tu is uncorrelated with the new error term. If we 
consider that the assignment mechanism is partially deterministic (i.e, Tu is determined by a set of 
observable variables W and by an error term ω), then, the treatment assignment can be endogenous 
due to a selection problem on observables (W) and/or on unobservable variables (ω). Depending on 
the assumption of the type of endogeneity, there are different ways of estimating the causal effect. 

Usually, we tend to assume that selection occurs on unobservable variables, so in this Chapter we 
will provide different approaches to deal with the fundamental problem of causal inference in that 
case. On the other hand, if we could assume that selection was done on observable variables, we 
could apply Matching techniques that rely on the Conditional Independence Assumption (CIA), 
which means that although we cannot assume that treatment is ignorable, on reasonable grounds we 
do claim that conditional on a certain set of observable variables X, the treatment assignment 
mechanism is independent of the distribution of the potential outcomes: 

Conditional Independence Assumption: 1,u uo uY Y T⊥ /Xu 

However, claiming that there is only selection on observable variables is a very strong assumption 
and in many cases not realistic. Thus, we will formalize what OLS can identify in a setting where 
we could have both selection on observables and unobservables. 

More formally, if we obtain the expression for ˆOLSδ  and take its probability limit, we get that the 
OLS estimator will identify: 

δ OLS = [ ] [ ]1 0| 1 | 0u u u uE Y T E Y T= − =  =    

δ OLS =  δ ΑΤΕ   +  E[ δu  - δ ΑΤΕ | Tu = 1] + E[εu | Tu = 1] - E[εu | Tu = 0] =  

δ OLS =  δ ΑΤΟΤ   + E[εu | Tu = 1] - E[εu | Tu = 0] = 

δ OLS =  δ ΑΤΟΤ   + E[Yu0 | Tu = 1] - E[Yu0 | Tu = 0]  
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In the last expression we collected the first two terms of the previous one, to obtain ATOT. Then, 
we can see that the OLS estimator will only recover ATE when there are no selection on 
idiosyncratic gains (i.e., the treatment effect is homogeneous so ATOT = ATE) and there is no 
selection bias due to baseline differences (usually called selection on non-treated outcomes). Thus, 
OLS will only recover ATE if there is no endogenity of the treatment, and will recover ATT if there 
is selection on idiosyncratic gains but in the absence of correlation between ε and T. 

 

 Randomized experiments 

Consider the hypothetical situation in which you, as a researcher, have some control over the 
program and the treatment assignment mechanism. How would you assign treatment so as to 
estimate unbiasedly the average treatment effect (ATE)? The answer is that there are good reasons 
why you would want to allocate the treatment T at random. This is what is known as a randomized 
controlled experiment. Random assignment is achieved by any procedure that assigns units to 
conditions based only on chance, in which each unit has a nonzero probability of being assigned to 
a condition.  The use of a randomized experiment constitutes a possible solution to the problem of 
selection bias in an evaluation. Here we have the greatest assurance that the program participants 
and the control group of program eligible individuals are on the average alike in every important 
sense (including observable and unobservable characteristics) except that one group has had the 
program and the otherwise probabilistically “identical” group has not.  

Social experiments are the most similar analogue in social sciences to the clinical trials in medicine. 
In clinical investigation, once the group of patients required for a certain trial is gathered (for 
example males of certain age suffering hypertension), the preferred way of assigning participants to 
control and intervention groups is randomization. It tends to generate groups comparable with 
respect to known and unknown risk or other prognostic factors and also removes the selection bias 
induced by the investigator if he assigns treatments. Participants should be aware of what their 
chances are of receiving either placebo or the alternative treatment, but they do not know their 
actual treatment status.  

Even in a clinical trial, although random assignment to treatment groups removes selection bias, 
there are other sources of potential bias that can arise due to conscious, subconscious factors, or 
both. It can occur at several places of the trial: from the design to the data analysis and 
interpretations. For example, the investigator can treat differently those patients potentially 
benefited with the new drug from those getting placebo, perhaps complementing the treatment of 
those in the control group. Or he could report the results in a different way influenced by pre-
concepts about the experimental treatment. A general solution for the problem of bias is to keep the 
participant and the investigator blinded or masked; meaning that neither knows which treatment the 
patient is actually receiving. The ideal clinical trials are randomized and double-blinded.  

In social sciences randomized experiments are not always feasible, due to ethical or practical 
reasons, or for policy reasons because the government may not agree to exclude a certain group 
from a policy or may target the policy on purpose to a determined non-random sub-population. 
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Furthermore, there does not exist an analogue for the double clinical trial, because in a training 
program, for example, there is a point in time in which the participant knows if he was assigned to 
treatment or control group. In addition to this, take into consideration that proponents of 
randomization implicitly assume that randomization does not alter the program being studied, so we 
assume that the decision of the participants are not affected by the treatment assignment. Many 
programs have multiple stages (enrolment, assignment to treatment, promotion, review of 
performance, or placement stage), and the randomization stage should be the least disruptive, which 
is hard to determine.  

To illustrate the use of randomized experiments to evaluate the effects of programmes, consider the 
paper by Banerjee et al (2007) in which two randomized experiments in India are analyzed to 
evaluate the impact of interventions to improve educational outcomes. The programs took place in 
two of the most important cities in Western India. In both cities children and teacher attendance was 
high, but the students’ results in the tests were poor. Therefore these interventions aim at changing 
what children learn while in school and consist on providing supplementary inputs to children at the 
bottom of the class. The first of the remedying intervention consists on assigning a young woman 
from the community to work on basic skills with children who have reached grade three or four 
without having mastered them. These children are taken out of the regular classroom to work with 
this young woman for 2 hours per day (the school day is about 4 hours). The second intervention is 
a computer-assisted learning program, where children in grade four are offered two hours of shared 
computer time per week, during which they play games that involve solving math problems. Both 
programs were allocated using random assignment across the same set of schools and were run on a 
very large scale (over 15,000 students affected over 3 years).   

For the first intervention, children in grade three in schools that received the program for grade four 
form the comparison group for children that receive the program for grade three, and vice versa. 
Whereas, the second program was implemented in half of the municipal primary schools focusing 
exclusively on children in grade four. The authors found that the programs were very successful. 
The remedial education program increased average test scores in the treatment schools by 0.14 
standard deviations in the first year, and 0.28 in the second year. Moreover, the weaker students, 
who are the primary target of the program, gained the most. The results suggest that the untreated 
children in treated grades also improved slightly, but mainly because the weakest were taken out 
from the class and not because of the adding of new resources (reduce of class size). The computer-
assisted learning increased math scores by 0.35 standard deviations the first year, and 0.47 the 
second year, and was equally effective for all students.  

Now, let’s study the implications of randomization more formally. Consider the potential outcome 
framework. If we randomly assign units to treatment and control groups then we should expect no 
difference between the potential outcomes of those who finally where assigned to each condition. 
Then: 
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So, if we return to the definition of ATE and ATOT, under randomization, we see that they are 
equivalent: 
 
ΑΤΕ  = Ε[δu]  = E[Yu0 - Yu1] = E[Yu0 ] – E[Yu1] 

ATOT =  Ε[δu | Tu=1]  = E[Yu0 - Yu1 | Tu=1] = E[Yu0 | Tu=1] – E[Yu1| Tu=1] = E[Yu0 ] – E[Yu1] 

 

That the estimation of ATE is equal to that of ATOT under randomization is quite intuitive. ATE 
differs from ATOT only when there is treatment heterogeneity. Randomization allows us to expect 
no treatment heterogeneity, so we should also expect that both effects were equal. Stated 
differently, since we randomized units to treatment and control, there is no reason why the 
treatment effect should differ between individuals that were assigned to each condition. 

In the linear model specification, this is the same as assuming that: 

E[εu | Tu = 1] = E[εu | Tu = 0] 

E[ δu ] = E[ δ ] 

So that δ OLS =   δ ΑΤΕ  =  δ ΑΤΟΤ 

These can be easily estimated by their sample counterpart:  

 
u1 u u0 u

ˆ ˆ ˆ[Y |T 1]-[Y |T 0]δ = = =  

Then, random assignment equates groups on the expectation of group means at pretest. That is, on 
the mean of the distribution of all possible sample means resulting from all possible random 
assignments of units to conditions. In principle, randomized trials ensure that outcomes in the 
control group really do capture the counterfactual for a treatment group. In practice we have only 
one drawn from the population, so we may or may not get ATE. So, what are the benefits of 
randomization? The advantage of randomization is that we can expect to obtain the true ATE. As 
we only have one draw from this distribution, either if we randomize or not, we might end up with a 
selected sample. But the main difference is that if we do not randomize, the assignment to treatment 
and control might be systematically correlated to the potential outcomes, and biases will be 
systematic. In the case of randomization, biases will result of bad luck, i.e, we obtained a random 
sample with an estimated ATE that has a low probability of materializing (estimates from samples 
placed in the tails of the distribution). 

 In most empirical studies, researchers are allowed to observed not only the treatment assignment 
and the outcome measures, but also some other variables that might be correlated or might explain 
to some extent the outcome variable. These variables are called covariates. 
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If these variables affect the potential outcome of the units, then they may act as confounders when 
we are trying to estimate the treatment effect. Additionally, using these variables we can sharpen 
our prediction about the baseline potential outcome of each unit and consequently reduce the 
residual error. When the covariates turn out to be closely correlated with the treatment assignment, 
then it would be hard to distinguish to what extent the differences in the observed outcomes 
between treated and control units are due to the treatment effect or due to the effect of the 
covariates. If the assignment to treatment and control was random, we have reason to expect that 
this assignment will not be correlated with the covariates.  

However, if there are many covariates, there is a high chance that the assignment would end up 
being correlated with at least one covariate. If this happens, we say that the covariates are 
unbalanced between treatment and control. In this case, the precision of our estimator of the 
treatment effect would be low, and the power of our tests will also be low. On the other hand, if 
these covariates explain to an important extent the baseline potential outcomes, we will be able to 
construct a better counterfactual for treated observations, the variance of the estimator will fall and 
our tests will be more powerful. 

At the experiment design test, we would like to take advantage of the existence of variables that 
sharpen our prediction about the counterfactuals, but we will be willing to avoid an unbalanced 
sample. We can add covariates, which are observable variables that affect the outcome measured. 
Including covariates the lineal model can be written as: 

0
1

k

u j ju u u
j

Y X T vβ β δ
=

= + + +∑  

Where Xj denotes de j-th covariate and βj denotes the effect of this covariate on the outcome 
measure. For each surveyed unit we will observe the outcome measure Yu, the value of the k 
covariates and whether this unit was treated or not. With this information we can estimate 
consistently the parameters for the covariates and for the treatment by OLS, under the assumption 
that all the explanatory variables are exogenous. 

Including the covariates in the analysis reduces the variance of the unexplained residual term. In 
fact, the regression estimator will be comparing the outcomes of treated and untreated individuals 
within each group. As a result, the estimator of the causal effect will be more precise and power will 
be higher.  The inclusion of covariates helps to reduce the empirical variance of the estimator, 
sharpening predictions about the treatment effect. 

Now, suppose that the random assignment of unit to treatment and control is such that the treatment 
ended up being highly correlated with the groups. For instance, too many individuals from the first 
group were assigned to treatment and few to control and the opposite occurred in the other group. 
Thus, when the treatment assignment ends up being correlated with the covariates, the result is a 
dampening in precision. If treatment is assigned randomly, we can expect no correlation with 
covariates in the same way that we expect no correlation with unobservables. An unbalanced 
sample is the result of bad luck in the same way that a selected sample is. However, there is an 
important difference. We will never know for sure whether our treatment assignment was or not 
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correlated with unobservables. At most, we know the probability that our estimated effect were the 
result of sheer chance, because of obtained a selected sample. On the other hand, we will observe 
whether we obtained an unbalanced sample or not.  

Furthermore, we could design the experiment in order to avoid unbalanced assignment and increase 
precision. Suppose that we observed covariates before we randomized units to treatment and 
control. Moreover, assume that the only covariate we observe is belonging or not to a group, for 
example workers that belong to different firms. Then, we could randomize individuals within each 
group to treatment and control. We would ensure that the sample is balanced on observable 
covariates and at the same time we will be able to take advantage of the reduction in the residual 
error resulting in increased precision. This technique is called stratification and was first proposed 
by Fisher (1926). Stratification involves dividing the sample into groups sharing the same or similar 
values of covariates. Then randomize within each group, to ensure that treatment and control groups 
are comparable.  

Under simple randomization there is a positive probability that we obtain an unbalanced sample. In 
this state of nature, the estimated variance of the OLS coefficients estimators is high since the 
sample does not allow us to disentangle the independent covariate and treatment effects. On the 
other hand, stratification avoids getting an unbalanced sample and; consequently, we can expect 
lower variance. 

There are several ways to build the distinct groups and assign units to treatment and control. Each 
strata may contain the same proportion of treated and untreated units; in this case the average 
treatment effect estimator is equal to the difference between the outcomes of treated and untreated 
units in each strata averaged across strata. Alternatively, each strata may contain 2 units, one 
assigned to each condition. This strategy is called matching and the average treatment effect is 
estimated as the average across strata of the difference between the treated and the control 
observation. There are situations of matching with multiple controls, where each strata contains one 
treated units and several untreated. This strategy is useful when providing treatment to units is too 
costly. 

So far, we have introduced randomization of units into treatment status, in which the randomization 
level was the single units we observed. In fact, we showed that under randomization, each unit has 
the same probability of being assigned to any treatment and we assumed that the observations were 
independent. We call this type of randomization at unit-level Simple Randomized Trials (SRT). 
Alternatively, we could gather units into groups so that each unit belongs to one and only one 
group, and randomize over groups of units. This is the case called Group Randomized Trials (GRT).  

GRT have two distinct features: 1) each unit of observation is a member of an identifiable group; 
and 2) entire groups are randomly assigned to treatment and control conditions. For instance, in-job-
training programs can be evaluated assigning firms to conditions and surveying the employees 
working at those firms. Entire groups are assigned to each condition but data is obtained from the 
members of those groups. Notice that GRT can arise on purpose and for other reasons. Sometimes 
the set up of the experiment requires that the units are gathered in certain groups of interest, or the 
social experiment is held so as to affect only particular locations, schools, firms, etc. Or GRT can 
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allow costs-reduction; for instance, when we have a large-scale household survey, it is common to 
sample groups of houses in the same neighbourhoods or blocks, and thus, this observations will no 
longer be independent within each neighbourhood or block; there will be spatial correlation. 

What it is important to note is that while assignment to conditions is random, group forming is not. 
Groups were formed before the intervention and there is certainly some connection among their 
members. Due to these connections, the methods applied to calculate intervention effects on 
randomly assigned units should be modified to allow for this particular assignment procedure. In 
GRT there are three sources of variability in outcome measures: 

1. Group effect: all members belonging to a group share a common error term that captures 
any group characteristic unobservable to the researchers.  

2. Individual error term: captures individual unobservable characteristics. 
3. Treatment effect: due to different assignment to conditions.  

Our goal is to estimate treatment effect, so we would like to reduce to the maximum sources 1 and 
2, so as to be able to isolate 3. The key difference between trials in which groups rather than units 
are randomly assigned to conditions is how the variance of the mean difference estimator behaves 
as sample size grows. In a simple trial, as the sample size grows, the first two sources of variance 
tend to vanish. Individual error terms cancel each other as there are more sampled individuals. 
Besides, since we are assigning into each condition members of all groups, group effects will cancel 
out across conditions. We would expect that for any given group, the same number of individuals 
were assigned to each condition. In our examples of firms randomized to a training program 
(instead of workers), if the sample size increases in a SRT, there will be a lot more of employees of 
all the firms in each of the two groups, therefore both samples –treatment and control- will be 
balanced in terms of group-effects; and in each group the increase in the amount of employees will 
lead to a neutralization of individual errors between each other (averaging zero).  

However, in a GRT, as the number of members per group grows, we can sharpen our prediction 
about the group mean effect. We would get more and more observation of units belonging to a 
particular group. Within each group, individual error terms will tend to cancel each other. 
Consequently, the variance due to the individual error term tends to zero. But, as we are not 
increasing the number of groups per condition, the component of the variance attributable to groups 
is not vanishing. 

To understand the effect of increasing the number of members per group in a GRT, we will consider 
this extreme case. Imagine the case that the variance attributable to individuals within groups is 
zero. Then, the outcome of every individual within each group will be exactly the same, and equal 
to the mean outcome in group. In that case, it would not matter how many individuals we sample 
from each group: once we observed one, we will know the outcome of every other member of the 
group. However, we cannot make a perfect estimation of the treatment effect because of the 
unobserved group effect.  This same result will be obtained if we sampled an infinite number of 
members per group. We will not be able to increase precision unless we sample more groups. 
Increases in the number of members per group will not help to reduce the noise introduced by group 
effects. 
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For all the above mentioned, we see that in the presence of some kind of relation between the 
members of the same group, assigning groups rather than units to treatment, leads as to an estimator 
of the treatment effect with a greater variance, and thus lesser precision. 

What are the implications of this result? There are two important implications. Firstly, since the 
variance introduced by the group-effect is reduced only if we assign units –rather than groups- to 
condition; for a given sample size, our estimator will be more precise when we perform SRT than 
when we assign groups (GRT). Secondly, if these group-effects were all zero, units belonging to the 
same group would not be correlated between each other. We could think of groups as being 
randomly formed, and we could apply the same methods we applied for SRT to estimate the 
treatment effect. However, in most GRT units belonging to the same group are correlated; the 
correlation among members within a group is called intra-class correlation (ICC). 

Why do we expect ICC to be different from zero? There are many reasons. Mainly, consider that 
subjects frequently select the group to which they belong, so this is a hint that any pattern of auto-
selection has an underlying reasons grounded on individual characteristics. In additions to this, all 
the individuals belonging to the same group or cluster (another name for group) share a common 
environment; so they are exposed to the influence of the same cluster-level variables. Finally, 
individuals in the same group are affected by personal interactions among cluster members. 

Formally, we can think of the outcome measure of individual unit u belonging to group k, assigned 
to condition l as: 

  
: : : : :u k l k k l u k lY T Gμ δ ε= + + +  

Where μ  is the population outcome mean, δ is the treatment effect, and Tk is 1 when group k is 
assigned to treatment and 0 if it is assigned to control.  All members belonging to a group are 
assumed to share some common characteristic unknown and unobservable to the researcher, Gk:l 
stands for the total effect of such commonality on the outcome variable, it is assumed to have zero 
mean. Finally, εi:k:l is the residual individual term which is also assumed to have zero mean. Zero 
mean assumptions are made without loss of generality since we are including a grand mean. Finally, 
μ and δ are parameters to be estimated while Gk:l and εu:k:l are random effects or unobservable error 
terms. 

The variance of individual observations is: 

 ( ) ( ) ( )2 2 2
: : : : : :u k l y k l u k l g c eV Y V G Vσ ε σ σ= = + = +  

Where ( )2
: :y u k lV Yσ = , ( )lkcg GV :

2
: =σ  and ( )2

: :e u k lVσ ε= . 

These are the two sources of variances that introduce noise in our treatment effect estimation: the 
group effect and the individual error term, respectively. 

Consider first the group mean: that is, the mean of all observations belonging to group k.  
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Y T G mμ δ ε−
=

= + + + ∑  

Where m is the number of members per-group which is assumed to be the same across groups to 
keep notation and analysis simpler. Then, the variance of the group k mean will have two 
components: the variance of the group effect, and the variance of the individual effect. If we sample 
more units from group k we will observe more realizations of the error term εi:k:l. However, no 
matter how many observations we get we will only observe one realization of Gk:l. As the sample 
size grows, the first component remains unaltered while the second tends to vanish.  
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The condition means are estimated as the weighted average of g-group-specific means.  

 1 1 1
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Where g is the number of groups per condition. Since groups were assigned randomly to each 
condition, the variance of the condition mean is: 
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Finally, the mean difference estimator is the difference between the estimated condition means.  

 ( ) ( )1 1 1
: : : : : :1 1 1 1 1 1

ˆ g g g m g m
k T k C i k T u k Ck k k i k u

g G G g mδ δ ε ε− − −
= = = = = =

= + − + −∑ ∑ ∑ ∑ ∑ ∑  

    

Note that the expected value of the estimator is the true treatment effect since all the remaining 
terms have zero expected values. Moreover the variance of this estimator is: 

 ( )
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m
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This variance tends to zero as g tends to infinity but it tends to 2
:2 cgσ  when m tends to infinity. 

Consequently, the consistency of this estimator is based on the growth of the number of groups per 
conditions, not of members per group. 
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The correlation between members belonging to a group is responsible for the loss of the consistency 
property as m tends to infinity. If there were no such correlation, i.e. if 02

: =cgσ , the consistency 

property would hold anyway. Define the intra-class correlation (ICC) as the share of total 
observations’ variability attributable to the group-effect: 
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Then, the expression for the variance of the mean difference estimator can be re-written as:  
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Note that if we could randomly assign each individual to treatment or control, the variance of the 
estimator would be only:   
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Then, the term ( )( )ICCm 11 −− , represents the variance inflation factor (VIF) due to the group-
level randomization under positive intra class correlation. In fact, when the ICC is equal to zero, the 
variance of the estimator is the same as under SRT (the last expression). And in this situation, 
increasing either the number of groups or the number of members per group causes the same effect: 
the variance tends to vanish. 

If group-level randomization results in higher variance and consequently lower precision, why 
should we ever rely on it? There are several reasons to prefer a GRT over a simple randomized trial: 
it might be cheaper, it might be accurate when a simple trial is not or it might be more practical.  

Firstly, it might be cheaper to randomize at group level. Remember that when performing program 
evaluation studies there is always a budget and time constraint; thus we must allocate the resources 
in order to assess estimations with the most possible statistical power. In general, providing 
treatment requires high fixed costs per-group and low marginal costs per additional member in the 
same group. Therefore, randomizing at the group level -paying the fixed costs only for those groups 
that are assigned to treatment- might be cheaper than randomizing at the individual level and 
providing treatment to some individuals in every group. This same argument applies when 
performing large-scale surveys, as mentioned at the beginning of this chapter. 

Secondly, sometimes considering SRT when the outcomes of the units are not independent is not 
statistically accurate. Remember that we introduced the Stable Unit Treatment Value Assumption 
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(SUTVA) which implies that the potential outcomes of the units do not change when the 
assignment pattern is modified; or in other words, it means that the outcomes of the individual units 
are independent of what happens to the other units. But in many contexts the SUTVA could not 
hold if we randomized at the individual level; and it could hold if we used group-randomization.  

For instance assume we want to study the effect of handwashing promotion on diarrhea incidence 
reduction in low income countries. Suppose that the treatment consists in explaining the treated 
individuals, the benefits of handwashing in reducing the risk of diarrhea and warning them of how 
dangerous the disease is for young children. If a household is assigned into treatment and thus, 
given sanitation instruction, it is probable that its members would tell what they learnt to their 
neighborhoods and friends. Some households assigned to control might receive the instructions via 
treated individuals. So, in this case, control units are contaminated; and, under widespread 
contamination it is hard to discriminate treatment effects. Conversely, if we randomized 
neighborhoods or villages instead of individuals, contamination of control units might not be as 
pervasive. Or recall the case of the worms infections we described earlier. 

Thirdly, and for practical reasons, in some cases it might be impossible to separate members within 
a group so that some individuals receive treatment and the rest do not. For instance, in 1995, the 
National Lung and Blood Institute evaluated an intervention designed to reduce the time in seeking 
medical attention among patients experiencing a heart attack. The intervention included a mass-
media campaign. It would be impossible to limit the delivery of the mass-media messages only to 
individuals assigned to treatment.  Consequently, the only choice available was to allocate whole 
cities to study conditions.  

Finally, for pure ethical reasons it may be unacceptable to provide treatment to some units in a 
given group or community while other are deprived of it. Sommer et al (1986) randomly allocated 
229 villages in Sumatra to intervention with vitamin A supplements and 221 villages to serve as 
controls.  “Political and administrative reasons” were mentioned as the rationale for GRT. Although 
in principle an individually randomized trial was conceivable, it was not feasible in that setting. 

 

Setting-up an Experiment 

There are some important elements of a social experiment that should be considered because will 
affect the estimations and inferences we can get from it. Firstly, we have to select the targeted 
population very carefully, according to the program we are evaluating, and decide the 
randomization level and stage. We also have to choose the design. 

There is some variety in the designs under randomization that we can choose according to the 
program we are studying. The basic design involves random assignment of units to treatment and 
control groups (or to more different treatments and a control group, or only to different treatments 
which a differential effect is what we are interested in). In additions to this, the basic design 
requires the post-test assessment of units.  



 

22 

 

It is of great importance how the control group is defined. It depends on the definition of the 
treatment and the characteristics that the researcher considers that affect it. For example, in medical 
experiments about drugs, the control group should be probabilistically equal to the treatment group 
and must be provided with the same treatment but for the drug. Therefore, in medical experiments, 
the control group is given placebo instead of the drug. Notice that the control patients do go to 
hospital and do think that they are being treated. So as providing them with placebo, the 
psychological part of treatment is contemplated, and the only difference between the treatment and 
the control group is the pharmaceutically active ingredients of the drug. An example of an 
experiment like this was the Salk polio vaccine in 1954: more than 400,000 children were randomly 
assigned to receive either the vaccine or a placebo. 

Although under random assignment the treatment and control group should be probabilistically 
similar in all observable and unobservable characteristics, it may be very useful to check that the 
sample we work with is balanced. For that purpose, one can compare a set of pre-test variables that 
on average should be similar for the two groups. Ideally the pre-test variables should be both of the 
post-test. This is what is called a pre-test post-test design which we will develop later. The pre-tests 
consist of gathering information about the units belonging to the control and treatment group before 
the treatment is implemented. Sometimes obtaining a pre-test is not feasible because it is either not 
possible in the context of the treatment studied, or it is too expensive or time demanding. Having a 
pre-test and a post-test leads us to think again on the fundamental problem of causal inference. If we 
could observe each treated unit twice, before and after treatment, could we use the first observation 
as a valid counterfactual for the second? The answer is yes, but only if the baseline outcome were 
time invariant. Otherwise, we would be confusing a trend effect with the true treatment effect. 

In pre-test post-test we added an observation before the treatment. In this way, longitudinal design 
adds multiple observations before, during or after the treatment, depending on the effect we are 
trying to identify. In practice it is very rare to have various pre-test and also post-test. It depends on 
the type of treatment being studied (sometimes it has no sense to follow up units too long). And it is 
not totally useful to have a lot of post-tests, because the threat of attrition increases with the length 
of the period considered after treatment. Furthermore, it is probable that the control group will 
eventually be assigned to treatment (this or any other). In some cases it will not even be ethical to 
prevent those units from receiving a benefiting intervention. 

Until now we considered a treatment as a defined discrete status. However, in some situations there 
can be treatments with different intensities. For example, instead of attending or not to extra lessons 
to improve performance in the school, students who take the program can choose between attending 
to 4-hour lessons or 2-hour lessons. Or treatments can be defined as having different doses of a drug 
(the control is the group that takes placebo). 

Factorial designs provide the possibility of identifying the effect of two or more independent 
variables (factors), each with two or more levels of intensity. An example of a factorial design is the 
New Jersey Negative Income Tax. This experiment was held between 1968 and 1972 in New Jersey 
and then expanded to other locations. This experiment basically consisted of estimating the effect of 
giving a guarantee income and a negative tax, on the decline of effort. The experiment had a 
factorial design. There were two factors: the guarantee level that was money given to poor families 
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that  did not earn any private income; and the marginal tax rate which is the rate at which the benefit 
was reduced (or income is taxed) as the recipient earned more private income. Simultaneously, 
guarantee income level was 50%, 75%, 100% or 125% of the poverty level; and the tax rate was 
30%, 50% or 70%. So there are 12 categories in which individuals can be included; it is a 4x3 
factorial experiment. 

There are some advantages of factorial design. Firstly, it often requires fewer units, because each 
unit will be used to determine the effect of two independent treatments. This happens unless there 
are special interactions which require a larger sample to attain certain statistical power in the tests. 
Secondly, it allows testing combinations of treatments easily. And finally, it gives the possibility of 
testing interactions between independent treatments with different levels. The drawback of this 
design is that when the number of level and factors grow, an experiment like this is really difficult 
to control in field settings. In laboratories it is more plausible to implement, so the range of topics 
where it is often applicable is reduced. 

Finally, another common design is a crossover design, which would mean exposing the same 
individual to two alternative treatments successively, with enough time between the treatments so as 
the effect of the first dissipates. However, this cannot be generalized to any treatment, because the 
effect must be ephemeral. 

 

A crucial element in the design of an evaluation study is the determination of the sample sizes 
needed to reject confidently the null hypothesis of no program impact or, equivalently, to detect an 
impact of some minimal magnitude with a given level of confidence. 

The power of the design is the probability that, for a given effect size and a given statistical 
significance level, we will be able to reject the hypothesis of zero effect. Consequently, sample 
sizes, as well as other design choices will affect the power of an experiment. Remember that in 
hypothesis testing we can make two kinds of mistakes: i) Type I error: when we reject the null when 
it is true; ii) Type-II error: when we fail to reject the null when it is false which equals 1-power. 

We will construct an hypothesis test with the null hypothesis of no treatment effect: H0: δ = 0  

We are considering the mean difference estimator for ATE, which under random assignment of 
treatment (in if all the units comply), is equal to ATOT. 

u1 u u0 u u1 u0
ˆ ˆ ˆ ˆ ˆ[Y |T 1]-[Y |T 0] Y -Yδ = = = =  

And the standard error of the estimated causal effect is: 

2 2 2 22
0 1 0 01

1 0

2ˆ( )se
N N N N

σ σ σ σσδ +
= + = =  
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Note that we are assuming that half of the population is assigned to treatment and half to the control 
group, then N=N1=N0 represents the amount of units assigned to each condition (the sample size in 
this case is twice N). And, we can assume that under the null hypothesis of no treatment effect, the 
variance of the treatment of the outcome of interest for the treatment and control group is the same.  

 

Let’s define the minimum difference we want to be able to detect as: 

0μμ −=Ω A  

If we want to detect a minimum effect of Ω, with a power of  (1-β)%, we have to choose the sample 
size so that we reject the null hypothesis of no effect with probability (1-β)%, when the true effect 
is Ω  and the significance level is set in α%. 
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Z is the standard normal distribution. The second term in the last expression is approximately zero, 
so we are left with the first one: 

/ 2 ˆ( )
p z Z

seα β
δ

⎛ ⎞Ω
< − =⎜ ⎟
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This analysis shows that when designing an experiment; significance level, power of the test, 
minimum detectable difference and sample size are all subject to the choice of the researcher except 
one. The researcher can choose freely all but one of these parameters and the other will be 
determined by the following equation: 
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We can assume that we know the baseline variance of the outcome variable, and can fix the 
significance level, the power of the test and choose a minimum detectable difference in the 
outcome; then, the expression above will be an equation for the sample size. As regards the variance 
of the outcome, it is usually information that is not available before we have a baseline survey, but 
in those cases, as a first guess we can look for these parameters in previously collected data, 
perhaps from another location that could have that variable distributed in a similar way. 

 

Then, we have to choose the significance level, or probability of type-I error, which in general is set 
at 5% or 10%. The next step is to specify the effect size that one wishes to be able to detect. Perhaps 
we have a hint of the potential effect of the intervention, and choose a conservative estimate of it in 
case it results lower. If we consider a very subtle effect, we will have to increase the sample size so 
as to detect that effect at a certain significance level and with a determined power. Finally, we face 
the trade-off between sample size and power of the test. It is usually considered that a power of 
80% to 90% is acceptable. Then, the sample size will be determined so as to meet all these 
requirements.  

In most of the cases the sample size has also a budget constraint. Therefore, the researcher must 
consider given the maximum sample size he can have, which power he can attain, or what would be 
the minimum detectable effect at a certain power. Then, if the minimum detectable difference is to 
low or the test is not well powered, it is suggested that the experiment should not be performed if 
the sample size cannot be increased. 

What about power calculations in the case of GRT?  Now, N that represented the amount of units 
assigned to each treatment arm, should be replaced by M.G (number of members times number of 
groups), so we have to determine both parameters. And the variance of the mean difference 
estimator is now: 

( )( )ICCm
mg

y 11
2 2

2
ˆ −−=

σ
σ δ

. 

We see that for reducing the variance, increasing M is not the same as increasing G. In fact, an 
increase of G, given the Intra-Cluster Correlation (ICC), will help reduce the standard error of the 
estimator at a faster rate for a fixed sample size. An increase in M will cause, that the estimator will 
be less affected by the noise coming from the individual error term. Increasing G will have the same 
effect on both, the individual and the group error term. If the cost depended only on the total 
number of units surveyed: n=2MG, then it is clear that we would choose to sample one unit from 
each group (M=1) and sample as many groups as necessary to achieve the desired power. Note that 
the larger the ICC, the grater the variance inflator factor, and thus, the higher the sample size 
needed. 

In most real-life situations there will be additional fixed costs associated to sampling more groups. 
For instance, groups might be cities and sampling an additional city might require paying fixed 
costs such as administrative expenses, getting a permit to treat individuals in that city, train field 
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workers in a new region, etc. In those cases, the study design has to weigh the power benefits from 
large number of groups against its costs and might find it optimal to sample a few groups and try to 
reduce the estimator variance increasing the number of members per group (if possible).  

Some further considerations on Randomization 

If random assignment of units to treatment and control groups is correctly implemented, we can 
affirm that randomization minimizes the threat to internal validity coming from selection bias. 
However, randomized experiments do not guarantee internal validity, though they make valid 
inference about causal relationships, because we cannot be sure that the other threats to internal 
validity are controlled. There are three situations in which the internal validity of the causal 
inference is threatened, even under randomization: i) lack of two stages –related to external and 
internal validity-; ii) non compliance and iii) attrition. 

In addition to these, we must take into account that although randomization seems that does not 
require any assumptions, there are unstated assumptions about the problem of interest, the number 
of stages in a program, and the response of agents to randomization.  

Randomization of units to conditions helps to solve the selection bias problem and disentangle the 
causal effect of a treatment on the sampled units. Ideally, we would like to generalize the effects 
that we found on the sampled units to the population where they belong. However, this 
generalization is not granted. For instance, we might have sampled just the units from a sub-
population that were more responsive to the treatment, so that for the whole population the 
treatment effect has to be necessarily lower than our estimation. So the possibility or having 
sampled a particular group of units that are not representative of the whole population impedes us to 
generalize our conclusions. 

This takes us back to our discussion about internal and external validity from the beginning of the 
Chapter. Although random assignment to treatment minimizes the threat to internal validity, it does 
not provide any information about the external. Therefore, we need a procedure to ensure the 
external validity of our results, which would allow us to generalize our results to the population 
where units belong. 

Attaining both internal and external validity requires a two-stage randomization procedure, as 
shown in the next figure: 

 Two-Stage Randomization 

Population SampleRandomization Randomization

Control 
Group

Treatment
Group  

-The purpose of the first-stage is to ensure that the results in the sample will represent the results in 
the population within a defined level of sampling error (external validity). 
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-The purpose of the second-stage is to ensure that the observed effect on the dependent variable is 
due to some aspect of the treatment rather than other confounding factors (internal validity). 

Therefore, an ideal experiment would involve a two-stage randomization. In the first stage, the 
sample is chosen selecting randomly units from the population. This stage will allow the researcher 
to generalize the results of his study. In the second stage, sampled units are assigned to treatment 
and control. This stage will allow the researcher to infer causal relationship from the sample. 

We have to introduce a subtle but not trivial distinction between random assignment and random 
sampling. We draw random samples of units from a population by chance when we get information 
from random samples of people or units. Random sampling ensures that answers from the sample 
approximate what we would have gotten had we asked everyone in the population. Random 
assignment, by contrast, facilitates causal inference by making samples randomly similar to each 
other, whereas random sampling makes a sample similar to a population. The two procedures share 
the idea of randomness, but the purposes of this randomness are quite different. 

However, in many practical situations first stage randomization is not possible. For instance we 
might be allowed to randomize workers into conditions, but only some workers that are employed 
by a particular firm or group of firms, or that have an income under determined threshold. These 
workers might not be representative of the whole population of workers. In these cases, even if 
causal relationships can be correctly inferred from data, generalization to a wider population set is 
not granted. 

Consequently, if we could get Two-Stage Randomized Trials, in large samples, we ensure that ATE 
is consistently estimated. However, if randomization takes place on a selected subpopulation the 
mean difference estimator only estimates ATOT consistently for that population.  

If the first stage is missing, ATE will be biased due to two sources: i) non-representative sample: 
the distribution of participant characteristics in the sample does not reflect the populations’; ii) non-
constant treatment effect: treatment conditions interact with participant characteristics. This is a 
main concern when due to the positive results of a randomized experiment, then the policy-makers 
consider the scaling up of the pilot. 

There are also some issues that arise even in randomized experiments that can seriously threaten 
internal validity. Randomized social experiments solve the problem of selection bias by generating 
an experimental control group composed of person who could have participated but who were 
randomly denied access to the program. However, there are some problems that can arise because 
the units we are dealing with are human beings that cannot be forced to follow the experiment 
protocol.  

For example, random assignment does not prevent participants from changing their behavior once 
they are assigned to treatment or control group. When participants are aware of the group they 
belong to, they can re-optimize and change their behaviour. For example, a worker not assigned to 
the job training program he volunteered to, may look for another program; or a worker assigned 
may have also found another alternative to improve his future earnings and may not participate. 
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These type of behaviours are typically referred to non-compliance. Another problem that can arise 
even after random assignment is attrition, which denotes the situation in which units belonging to 
the original sample in an experiment, leave it before the measurement of outcomes. Enrolling in a 
program, or being assigned a treatment, but then dropping-out, is another usual behavior among 
human beings. The consequences of imperfect compliance and attrition in randomized experiments, 
as well as the possible solution to these problems will be exposed in the next sections. 

In general, Heckman and Smith (1995) state that there are two assumptions that must hold for 
outcomes of an experimental control group to correspond to the outcomes that participants would 
have experienced had they not participated in the program (counterfactual outcomes of 
participants): 

i) Absence of Randomization Bias: randomization should not alter the process of selection into the 
program, so those who participate during an experiment do not differ from those who would have 
participated in the absence of an experiment. If we suppose that the effect of treatment would be the 
same for everyone, this assumption is unnecessary. 

ii) Absence of Substitution Bias: participants assigned to control group cannot find close substitutes 
for the treatment elsewhere. It may happen that those note benefitted from the program will look for 
another similar program and thus drop out the study. 

In the presence of these biases, the mean outcome of the experimental control group no longer 
represents the outcome that would have obtained the beneficiaries on average, had they not received 
treatment. When these sources of bias are relevant, the researcher must think of the potential 
drawbacks of performing social experiments and compare them with those of alternative non-
experimental evaluations. In non-experimental techniques the counterfactual outcome is obtained 
econometrically using models that explain participation and outcomes; which naturally also require 
assumptions. 

Furthermore, randomization itself could be a source of bias. Imagine that applicants to a training 
program know that they will be randomized in or out. It is probable that those risk-averse would 
seek other programs. In consequence, the only internal validity threat that randomization prevents 
from occurring is selection bias, which it rules out by definition.  

Finally, random assignment is not the only way of eliminating selection bias. Uncorrelated errors 
can be created with other forms of controlled assignment to treatment status, as with non-
experimental techniques such as regression discontinuity design that we will study further in this 
Chapter. 

 

Imperfect Compliance and Intention to Treat 

Consider that we can have an experimental design in which individuals who qualify for the job 
training program are randomly assigned to participate or not. Then we can compare outcomes of 
those participating and not to identify the causal effect. Note that if we considered randomly 
individuals from the population, and from this sample we randomly assign some to treatment and 
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some to control group, we would be identifying an average treatment effect. However, if the 
randomization is within a sub-group not randomly selected (volunteers, for example), we would be 
able to identify the average treatment effect on the treated.  

In social sciences, where the experimental units are human beings, we can assign units to different 
treatment status but generally treatment is not perfectly enforceable. Thus, we must be careful, 
because for example in the job training program, assignment to the program does not necessarily 
mean participation. There are some participants which are assigned to the treatment group, but 
refuse to take it; and also it could happened that some controls are finally accepted in another 
program: this implies partial or imperfect compliance. Consequently, although assignment is 
random, participation may depend on certain factors not contemplated by the researcher. 

In these cases, we can think that the assignment only affects the probability that the individual 
receives treatment but not actually rules out the treatment status. There are multiple causes of partial 
compliance; for example in many cases it is not possible to enforce compliance of control units 
when treatment is profiting and can be obtained from another source different from the program (a 
new drug that can be acquired, or even job training provided by another program). 

In the former example of the training program, imagine we randomly assigned treatment to a 
randomly chosen sample. Now the variable indicating treatment assignment will be Zu. If we allow 
for imperfect compliance, we must use another variable to refer to treatment actually taken, which 
will be Tu. But, how do we deal with the identification of the causal effect in the case of imperfect 
compliance?  

So, if we calculated the difference between the outcomes of those assigned to treatment (Z=1) and 
those in control group (Z=0), would we be able to identify ATE? This is clearly not the effect of 
treatment (participation in training program) on outcome (income), because variable Z does not 
necessarily indicate participation. This difference will only identify ATE in the case of perfect 
compliance in which Z would coincide with T. Nevertheless, even in the presence of non-compliers, 
it is an interesting parameter. Which one? It represents the overall effect of the intervention to the 
entire sample, which is important for evaluating policies. We call it Intention-to-Treat (ITT), and 
can be thought of as the causal effect of treatment assigned but not necessarily the causal effect of 
treatment received.  

[ ] [ ]| 1 | 0ITT
u u u uITT E Y Z E Y Zδ= = = − =  

Expanding each term by the law of iterated expectations, we can see that under perfect compliance, 
ITT is equal to ATE. 

[ ] [ ]
[ ] [ ]
[ ] [ ]
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Because of perfect compliance, we can replace the probabilities by 0 if Tu≠Zu, and by 1 if they are 
equal, getting: 

[ ] [ ] [ ] [ ]| 1 | 0 | 1 | 0ITT ATE
u u u u u u u uE Y Z E Y Z E Y T E Y Tδ δ= = − = = = − = =  

If treatment effect is homogenous among treated and untreated individuals, the fact that people from 
the treatment group do not take it (thus reducing the average outcome of those assigned), and 
people in the control group may take another treatment (thus increasing the average outcome of 
those not assigned to treatment), then ITT will be less than ATE. It is said to be a conservative 
estimate of ATE. However, when treatment is heterogeneous, ITT is still a biased estimate of ATE, 
but it could under or over-estimate it; we have no clue of the direction of the bias. 

Remember that it was very important to assign treatment in a random way so as to balance the 
treatment and control groups in both observables and unobservables. But, when there is imperfect 
compliance, and we estimate the mean difference between those assigned to treatment and control 
groups, we can no longer ensure that the groups are balanced. This is because in general non 
compliance has diverse underlying reasons (for instance smaller expected gain from treatment or 
lesser motivation from participants), which unbalances groups and makes ITT a biased estimate of 
ATE. 

Another estimator of the causal effect we could try, is the mean difference between those taking 
treatment and not. This does clearly not identify the causal effect of the training program 
(treatment), because even though assignment to the program was random, there was self-selection 
of participants. Thus making on average those actually treated different in some way from those not 
treated. Perhaps treated are more motivated or expect a greater gain than those that prefer not to 
take the program in spite of the fact of having been offered a place. 

In this last case, we can claim that treatment is endogenous because the participation decision that 
makes the individual to take or not the treatment that is correlated to the potential outcomes of the 
individual. If selection is on unobservables, we can apply the standard instrumental variables 
framework, were we able to find a suitable instrument. Remember that the conditions that a valid 
instrument should satisfy are: i) the instrument must be correlated to the endogenous variable (T in 
this case); ii) the instrument must be uncorrelated to the error term, thus it must affect the outcome 
variable only through its effect on the endogenous variable T. 

Notice that in the case we are analyzing of a randomized experiment with imperfect compliance, we 
have the variable denoting assignment Z, which is a perfect instrument for T because the treatment 
assignment is supposed to influence the participation into treatment at least to some extent; and its 
random nature makes Z uncorrelated to other variables affecting Y. So we can instrument T with Z 
and get the instrumental variable estimator. In the next line we will derive the estimator and then try 
to disentangle which assumptions we need to make it a meaningful causal parameter. 

Recall the lineal regression model we studied earlier in this Chapter: 

Yu  =  β + δ ΑΤΕ Tu + [εu + (δu  - δ ΑΤΕ )Tu ] =  β + δ ΑΤΕ Tu + vu  
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We are looking for the causal effect of T (treatment; training program) on the response variable Y 
(earnings). Thus, we will have the following outcome regression; 

Outcome Regression: 0u u uY T vβ δ= + +  

Tu is not random, because in the end, there is no enforcement of treatment assignment, so the choice 
of participating or not in a certain program/treatment is done by each individual; there is self-
selection into treatment. The regressor T is contemporaneously correlated with the error term; 
because there are unobservable factor influencing the decision to take the treatment (participate in 
job-training programs) that at the same time affect the outcome Y.  

More formally, we can derivate the IV estimator applied to the case of an endogenous binary 
variable (treatment) as follows: 

There are N units (u). Which can be assigned to treatment or not: Zu =1 or Zu =0. 

As we allow for the possibility of imperfect compliance, each unit can actually receive treatment or 
not: Tu =1 or Tu =0. 

Participation in treatment depends on the treatment assignment: Tu=Tu(Z) 

The final outcome, Yu, would depend on the assignment and treatment: Yu=Yu (T,Z) 

We have two different regressions: 

Outcome Regression: 0u u uY T vβ δ= + +  

Treatment Regression: 0u u uT Z wλ γ= + +  

There are three parameters in which we may be interested in: i) The effect of Z on T; ii) The effect 
of Z on Y; and iii) The effect of T on Y 

Under which assumptions could we identify those parameters? Under SUTVA (potential outcomes 
and treatments of each unit u are independent of the potential assignments, treatments and outcomes 
of the other units) and Ignorability (applied to assignment, meaning that each individual has the 
same probability of being assigned to treatment. Pr(Zi=1) = Pr(Zj=1)), we could dentify: 

A. The causal effect of Z on D: 
E[Du|Zu=1] - E[Du|Zu=0] 

B. The causal effect of Y on D: 
E[Yu|Zu=1] - E[Yu|Zu=0] 

The instrumental variables (IV) estimator is defined as: 

cov( , )
cov( , )

IV u u

u u

Y Z
T Z

δ =  
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In case of a binary instrument, as in this case, this is equal to the Wald estimator: 

[ ] [ ]
[ ] [ ]

| 1 | 0
| 1 | 0

u uIV
Wald

u u

E Y Z E Y Z
E T Z E T Z

δ δ
= − =

= =
= − =

 

The IV estimator can be estimated in two steps: in the first one, the treatment equation is estimated 

by OLS and calculated the predicted T̂ . Then in the outcome regression, T could be replaced by 

T̂ estimating the parameters again by OLS. This procedure is called Two Steps Least Squares 
(2SLS).  

The IV estimator does not recover ATE, because note that we can re-write the IV estimator as: 

[ | 1]Pr( 1| )
cov( , )

IV u u u u u

u u

E Z v T T Z
T Z

δ δ = =
= +  

So the IV estimator only identifies ATE under the unlikely assumption that covariance between the 
return to treatment and the instrument is zero among the treated units. 
 
Therefore, without further assumptions and general imperfect compliance IVδ does not have a 
causal interpretation. There is still a special case when although there is imperfect compliance 
among the ones assigned to treatment, we can rule out the possibility that those randomized out 
could get the treatment. For instance, if we take a small village and randomize workers in and out a 
job training program, there is no such a program available in the village apart from the one we 
provide.  P (Tu=1|Zu=0) = 0 
 
Expanding the conditional expectations from the expression for IVδ  and rearranging terms, we can 
get that under this special patter of imperfect compliance we recover the average treatment effect 
for the treated (ATOT): 
 

[ ] [ ]
[ ] [ ]

[ ] [ ]
[ ] [ ]1 0

| 1 | 0 | 1 | 0
| 1

| 1 | 0 1| 1
u u u uIV ATOT

u u
u u u

E Y Z E Y Z E Y Z E Y Z
E Y Y T

E T Z E T Z P T Z
δ δ

= − = = − =
= = = − = =

= − = = =
 

 
The IV estimator can also be related to the ITT parameter we defined before, because the numerator 
of the IV estimator is exactly the ITT. 

[ ] [ ]
[ ] [ ] [ ] [ ]

| 1 | 0
| 1 | 0 | 1 | 0

u uIV

u u u u

E Y Z E Y Z ITT
E T Z E T Z E T Z E T Z

δ
= − =

= =
= − = = − =

 

However, IVδ in the general case of imperfect compliance does not have a meaningful causal 
interpretation. Angrist, Imbens (1994), state some assumptions to provide such intepretation 

For the causal effect of T on Y, we need some further assumptions: 

1. Non-zero average causal effect of Z on T. This means that treatment assignment influences 
the individuals’ choice of participating in the program/ taking treatment. 
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This means that the probability of treatment must be different in the two assignment groups: 

Pr(Tu(1) = 1) ≠Pr(Tu(0) = 1) 

This is equivalent to stating that in the treatment regression, γ ιs significativly different 
from zero. 

2. Exclusion Restriction: assignment only affects the final outcome through treatment. This 
cannot be tested. 
 

3. Monotonicity: No one does the opposite of his/her assignment, no matter what the 
assignment is. In the next table we show all the alternatives that can happen combining Z 
and T. 
 

Classifications of Units according to Assignment and Treatment Status 

Zu = 0 
 

Tu (0) = 0 Tu (0) = 1 

Tu (1) = 0 Never-Taker Defier 
Zu = 1 

Tu (1) = 1 Complier Always-Taker 

 
 
Monotonicity means that there are no defiers. They are represented as those for whom: 

Yu (1,0) – Yu (0,1) = - (Yu (1) – Yu(0)) 

This assumption also implies that Tu(1) ≥ Tu(0).  
 

 
Combining 1 and 3, we can claim that there are no defiers, and there is at least a complier. If from 1 
to 5 hold, the following expression holds:  
 
E[Yu(1,Tu(1)) - Yu(0,Tu(0)] = E[Yu(1) - Yu(0) | Tu(1) - Tu(0)] . Pr {(Tu(1) - Tu(0)} 

 

And the causal relation of T on Y would be: 

[ ] [ ]
[ ] [ ]

LATE
u u u u

| 1 | 0E[Yu(1,Tu(1)) - Yu(0,Tu(0)] =E[Y (1) - Y (0) | T (1) - T (0)] =
Pr {(Tu(1) - Tu(0)} | 1 | 0
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This is what they call the Local Average Treatment Effect (LATE), representing the average effect 
of treatment for those who change treatment status because of a change of the instrument; i.e. the 
average effect of treatment for compliers. 

Notice that then, if we assume that the causal effect of treatment is the same for all the treated 
individuals independently of assignment (which would imply a strong not-verifiable assumption), 
then the instrumental variables estimator would estimate the causal effect of the treatment. 
However, if treatment is heterogeneous, we would only identify (under some further assumptions) 
only a local average treatment effect (LATE). This causal effect represents the effect of treatments 
only for those who are compliers; i.e., they participate or not in the program, according to what they 
have been assigned. 

To illustrate the use of ITT and IV in the literature, let’s consider the paper by Kling et al about the 
effects of neighborhood on crime. A majority of theoretical models suggest that returns to engaging 
in criminal activity are larger in communities with high levels of crime, and low economic 
opportunity. The Moving to Opportunity (MTO) experiment has been in operation in Baltimore, 
Boston, Chicago, Los Angeles, and New York since 1994. Participant families had to be living 
within public or section 8 project-based housing in certain high poverty census tracts. The families 
who signed up for the program were randomly divided into three groups: the experimental group, 
which received housing vouchers which could only be used in census tracts with a 1990 poverty 
rate below 10%; the section 8 group, which received vouchers with no constraint on the area where 
they could be used; and the control group, which kept its pre-existing social services, but received 
no further assistance under MTO. So, the design consists of two alternative treatments and a control 
group. 

Although voucher availability was random for each family, not every household actually used 
their subsidy. Thus, take-up was not random, which means that comparing outcomes across 
groups will not give an unbiased estimate of the effects of moving to a better neighborhood. 
However, initial assignment can be used as an instrument for actual treatment in the estimation of 
the effects of MTO on those who actually use it. This paper uses initial assignment directly to 
estimate the Intention to Treat effect, and as an instrument to obtain the Treatment on the Treated 
effect of the MTO program. The authors want to study the effect of program participation on 
youth delinquency and criminal behavior.  Initial characteristics are similar for all treatment 
groups, in both samples, indicating a successful randomization. A year after randomization, 
however, those who moved lived in strikingly different areas from those who didn’t, and the 
difference persisted even four years after that. This effect persisted three years later – with 
experimental and section 8 households living in richer neighborhoods with lower violent and 
property crime. Moreover, in 2002 (about eight years after randomization), these households 
lived in neighborhoods with higher adult involvement and police activity. The paper attempts to 
estimate what part of these differences should be attributed to the MTO program, given that 
actually using the vouchers was not random. The authors conclude that overall, violent crime 
went down – the IV estimate for the experimental group indicates that on average, youths whose 
households decided to move as a consequence of voucher availability had 0.147 less lifetime 
arrests for violent crime. Given that the sample mean is 0.388 lifetime arrests for this crime 
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category, this is a substantial effect size. Though not significant, there is an increase in property 
crime for this group.   

 

Attrition 

Attrition is the last problem that remains even after random assignment that we will deal with in this 
chapter. As stated before, attrition is the name for the situation in which units belonging to the 
original sample in an experiment, leave it before the measurement of outcomes. In which situations 
can attrition appear? There is a wide range of ways in which attrition can evidence: simply failing to 
ask a single question to a participant, dropping people from the originally assigned sample because 
they do not meet the necessary criteria (no longer have the illness required for the clinical trial); or 
because the participant moved. It is very important to determine whether attrition was influenced by 
treatment or not. For example, in the first cases attrition may be caused by a random failure of the 
researcher, but in the last case (participants who move and thus drop out of the experiment) it is 
complicated to identify if the cause of its move was treatment assignment or if that person would 
have moved anyway. 

Even though any kind of attrition reduces the statistical power, if attrition is not correlated with the 
conditions of the unit in the experiment or the future outcomes, it would not be a threat to internal 
validity because it will not bias the estimate of the causal parameter. However, if attrition is 
correlated with the assignment or with potential outcomes it introduces biases in the estimates that 
are hard to deal with. 

Remember that random assignment had the advantage of equating groups on expectations in the 
pre-test, and assuming that that the equivalence would hold in the post-test. However, when there is 
non-random attrition, the correlation between attrition and outcomes act as a confounder to 
detecting the causal effect of treatment. In those cases changes in outcomes could be attributed both 
to treatment and the unknown correlation between attrition and treatment. Randomization deals 
with selection bias, but cannot prevent attrition bias to occur. 

Usually, a first step to deal with attrition, is planning in advance a larger sample. This is effective in 
the case where attrition is balanced in the two groups, not only in the rate but also in the observable 
and unobservable characteristics of those quitting (the simplest case when we say that attrition is 
random). Another important issue when designing the set-up of an experiment is the contemplation 
of retention and tracking strategies so as to prevent attrition. For example, there is a list of 
procedures that can be set so that the researcher can find the individual after treatment and not lose 
its information (collecting data about its location and its relatives, offer economic incentives to keep 
people in the sample, provide adequate contention during interviews to prevent answers’ refusal, 
minimizing time and obstacles between randomization and treatment, etc.).  

However, if attrition is differential, there will be a complicated problem. For instance, assume that 
individuals who get the lower benefit from a program tend to quit. Then, if we don’t take this into 
account, we will overestimate the effect of the program. Consider the example of students taking 
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extra classes, if the worst students leave the treatment group before the test, the causal estimate will 
be biased upwards. So, what does constitute a threat to internal validity is differential attrition. 

Besides, differential attrition may be present even when the rates of attrition are the same in the 
control and treatment group, because they may drop out due to different reasons. Therefore, our 
estimates might be biased despite both groups exhibit the same percentage of drop-outs. For 
instance, in a clinical trial evaluating some procedure or medication, attrition might be due to health 
status being extremely bad, death; or extremely good, making people to lose interest in the program. 
If the treatment is beneficial, attrition in the treatment group will be among those with the best 
potential outcome, while in the comparison group will be among those with the lowest. Even if 
attrition rates are similar, our estimates of the treatment effect will be biased downward. 

Statistical procedures to deal with attrition ultimately depend on assumptions made on how attrition 
occurs. Therefore, planning the data collection process in order to minimize its occurrence is 
crucial. When attrition is unavoidable and following up attritors is too expensive, a random sample 
of them can be selected for intensive follow-up. The problem of attrition has received diverse 
approaches and treatments, from assuming that nonresponse is ignorable, to modelling the process 
determining which data are missing (Heckman 1979), or bounding the parameter of interest (Lee 
2005, Horowitz and Manski 1998).  

Descriptive Analysis and Identification of Attrition Patterns 

If attrition occurs, the researcher must report attrition rates in both condition groups. If baseline data 
is available he should compare attritors with non-attritors to detect systematic patterns along any 
observable dimensions. The existence of a pre-test contributes very much when there is differential 
attrition, as we mentioned in the designs section.  

As part of the descriptive analysis, the overall attrition rate and the differential ones for the 
treatment and control group should be reported. Also, there should be analyzed whether those who 
completed the study differed from those who did not on important observables; and the same study 
should be performed for those who completed the treatment and who did not; and for those who 
remained in the control and treatment group. Furthermore, it should be assessed not only whether 
different groups have different patterns of attrition, but also if different measures show different 
patterns. Also, it should be determined whether certain subsets of respondents or sites have 
complete data that could be useful to identify the causal effect. 

The appropriate statistic procedure to deal with the problem depends on the diagnosis about the 
attrition pattern. 

Replacing Drop-outs 

One way to deal with attrition would be to set the number of units which quit the experiment before 
measurement in each group, and in order to regain the original sample size, randomly select new 
participants (and randomly assign them treatment) from the same pool of applicants where the 
original group was selected. 



 

37 

 

The advantage of this approach is that it keeps the original sample size, which is important for 
statistical power sake. However, it does not necessarily solve the bias that attrition may generate. 
There are some assumptions under which this procedure would solve attrition. Following Shadish et 
al (2002), these assumptions are: i) both attrition and replacement are at random (which is unlikely 
for the case of attrition and very difficult to verify); or ii) former and new participants have the 
same latent characteristics (again unlikely and difficult to verify). 

Sample Selection Modelling 

This approach starts from the fact that the outcome variable is not observable for every unit of the 
sample. The reason may be diverse, for example, we may be interested in the effect of a training 
program on earnings, and we will only have the post-treatment income of those who work; or 
merely because of drop-out units. 

The key issue of this type of analysis is that although we cannot see all the observations for the 
response variables, we could model the sample selection model. For that, we should find some 
instrument that could affect the probability of observing certain units’ responses in the sample, but 
at the same time must not affect that response or outcome.  

If we could find suitable variables to model the selection process, then, following Heckman (1979), 
we should include another term (corresponding to the inverse of the Mill ratio) as a regressor in the 
outcome equation, to correct the estimation for sample selection.  

In more detail, the Heckman Sample Selection Model, starts considering the response equation that 
has a response variable y, observed only when d is positive. Otherwise, the response variable is not 
observed, but the variables involved in the probability of observing that variables are observed. 

i

i i i i

i i i

y *= +
d *= +u ; d =1[d * > 0] (probit)
y  = y * if d  = 1; not observed otherwise
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From the last expression we can see that performing OLS provides us with inconsistent estimates, 
because it does not include the last term. � is called the inverse of the Mills, and represents a 
monotone decreasing function of the probability that an observation is selected into the sample. 

He have already mentioned the difficulty of finding credible instruments for endogenous regressors, 
and evaluate programs where intention-to-treat is randomized. However, devising instruments for 
the probability of observation is a more challenging problem. One way to deal with this problem is 
partial randomization of the probability of observation. An alternative to perform it, is to alter data 
collection procedures, such as by randomizing half of sampled units to more intensive follow–up. 

  

A common critique to this parametric approach to correcting sample selection is that its validity 
relies on distributional and functional form assumptions, as well as exclusion restrictions. A number 
of less restrictive semi-parametric approaches have been recently introduced in the literature. A 
common thread in all these formulations, however, is that they need to characterize the mean of the 
regression error term conditional on the regression covariates and the sample selection rule. An 
alternate approach is discussed in Ahn and Powell (1993). They propose to eliminate the selection 
bias by differencing observations with similar probabilities of selection sidestepping the problem of 
estimating the unknown conditional mean function.  Angrist (1995) propose using propensity scores 
to condition on the probability of selection given the instrument chosen, as long as the relation 
between the instrument and selection status, satisfies monotonicity. 

Setting Bounds to the Estimation 

When using instruments to estimate the probability of retaining the observation in the sample, we 
must trust on exclusion assumption which may not be credible because they are very difficult to 
satisfy. Remember that instruments must not appear in the outcome regression but must influence 
de probability of selecting that observation into the sample. 

Lee (2005) set bounds that allow for treatment effect heterogeneity and require no valid exclusion 
restriction. However, they do involve additional assumptions. Assume that we know or assume that 
those assigned to treatment are at least as likely to remain in the sample as those who are not, and 
that treatment is never harmful. Then, the mean difference estimator will provide a lower bound on 
the average treatment effect on the non-atrittors. To obtain an upper bound one can choose a 
quantile, q, such that q not higher than the attrition rate in the control group, and then drop the lower 
q percent of the treatment distribution to calculate the mean difference. There is one additional 
assumption behind this procedure, that the counterfactual observation of those treated units that are 
not dropped (i.e. they are in a quantile higher than q in the distribution of outcomes under 
treatment) belong to quantile higher than q in the distribution of outcomes under absence of 
treatment. 

Horowitz and Manski (2000) provide another approach using bounds; but their bounds are wider, 
and are constructed considering the worst case assumption about missing data, and the higher 
assumptions for the upper bound. 
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Quasi-Experimental Designs 

We have been discussing throughout the previous pages that to estimate causal effects we would 
ideally like to know the counterfactual outcome, which is impossible. We introduced the mean 
difference estimator,  that consisted on comparing the outcome of the treated units to that of the 
control group. If the intervention is randomly assigned, the treatment and control group are 
probabilistically similar in every observable and unobservable characteristic, except for treatment 
status. When randomization is not possible, but we can claim that selection occurs on observable 
variables, we could try to find an appropriate control group through matching for example. When 
selection into treatment is due to differences in unobservables (like the case of imperfect 
compliance), we could look for a suitable instrument and use the IV estimator that under the 
monotonicity assumption can provide the LATE (effect of the treatment on compliers). However, it 
is really complicated, and sometimes not even possible to find a valid instrument. When we have 
random assignment, we can have the perfect instrument, but when it is not the case, it is more 
complicated. 

In the next part of the Chapter, we will introduce some designs that under certain assumptions allow 
the researcher to identify causal effects, but they do not imply random assignment of units to 
treatment status. That is why these designs are often called Quasi-Experimental Designs; they look 
like experiments, but lack the main characteristic: randomization.  

The first type of  quasi-experiments that we will study are the natural experiments. Sometimes, we 
can find that natural events, (such as floods, earthquakes) or administrative regulations (changes in 
laws that does not have to do with the outcomes we study), can be a source of exogenous variation 
that can allow us to identify causal effects. A natural experiment can be though of as an instrument 
in some sense, but broadly speaking is another evaluation method very popular in practice, though, 
finding natural experiments is as difficult as finding valid instruments. 

To illustrate how natural experiments can be used to identify causal relationships, consider the 
difficult task of evaluating the causal effects of property rights. In most of the cases their allocation 
is endogenous (based on wealth, family characteristics, individual effort, previous investment 
levels, or other selective mechanisms), thus impeding the identification of the causal parameters. 
Galiani and Schargrodsky (2008) exploit a natural experiment in the allocation of land titles to 
overcome this identification problem.  

In 1981, about 1,800 families occupied a piece of wasteland in the suburbs of the Province of 
Buenos Aires, Argentina. The occupants were groups of landless citizens organized through a 
Catholic chapel. As they wanted to avoid creating a shantytown, they partitioned the occupied land 
into small urban-shaped parcels. In 1984,   the Congress passed a law expropriating the land from 
the former owners with the purpose of entitling it to the occupants, some of the original owners 
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accepted the government compensation, while others are still disputing the compensation payment. 
These different decisions by the former owners generated an allocation of property rights that is 
exogenous in equations describing the behavior of the squatters. They found that entitled families 
increased housing investment, reduced household size, and improved the education of their children 
relative to the control group. The authors could benefit from the change in a property rule and 
different responses to assess the effects of property rights in outcomes of interest. 

In most of the quasi-experimental designs, we will need to have a pre and a post test of each unit. 
Generally speaking, when a cross-section or group of units (people, students, schools, firms, etc.) 
are surveyed periodically over a given time span, we refer to the pool of data as a Panel. Panel 
analysis can provide a powerful study of a set of units, if one is willing to consider both the space 
and time dimension of the data. We will exploit the special and temporal dimensions to estimate 
causal effects, in situations in which we can assume that the counfounders are unobserved but fixed 
omitted variables. 

The pre-tests consist of gathering information about the units belonging to the control and treatment 
group before the treatment is implemented. Sometimes obtaining a pre-test is not feasible because it 
is either not possible in the context of the treatment studied, or it is too expensive or time 
demanding. For example, when we assign workers to a training program, the researcher might add 
multiple pretests to reveal if motivation or cognitive development trend before the treatment is 
analogue between the groups, and then compare it with pos-tests measurements. 

In pre-test post-test we added an observation before the treatment. In this way, longitudinal design 
adds multiple observations before, during or after the treatment, depending on the effect we are 
trying to identify. Although such a design would be useful because it would provide very valuable 
information, in practice it is very rare to have various pre-test and also post-test. It depends on the 
type of treatment being studied (sometimes it has no sense to follow up units too long). And it is not 
totally useful to have a lot of post-tests, because the threat of attrition increases with the length of 
the period considered after treatment. Furthermore, it is probable that the control group will 
eventually be assigned to treatment (this or any other). In some cases it will not even be ethical to 
prevent those units from receiving a benefiting intervention. 

Having a pre-test and a post-test leads us to think again on the fundamental problem of causal 
inference. If we could observe each treated unit twice, before and after treatment, could we use the 
first observation as a valid counterfactual for the second? The answer is yes, but only if the baseline 
outcome were time invariant. Otherwise, we would be confusing a trend effect with the true 
treatment effect. Notice that we perfectly controlled for any time invariant factor, but time varying 
factors will be confounders (time trend in the formula above). Any secular trend increasing the 
outcome will inflate our estimation of the treatment effect. So, we need a counterfactual to see what 
would have been the true trend if units had not been treated. Now the problem of causal inference 
reappears with all its strength! However, the problem is different; we are not concerned about 
counterfactual levels but about counterfactual trends.  

For example, imagine we return to our example of the job training program. From a population of 
unqualified workers, a group is assigned to a training program and another to a control group. We 



 

41 

 

observe their earnings before the program and after it. If we compare the earnings of the 
participants before and after the program, we may find a positive difference that could be attributed 
either to the intervention or to economic growth in that place at that time which spilled over all the 
sectors of the economy, in particular to that where the workers of our experiment belong. 

Let’s look at the problem employing some simple expressions. In a pre-test post-test design we 
observe for each individual two observations, both defined by: 

it it i itY t T uα χ δ ε= + + + + . 

Where α is the grand mean in period 0, χ is a trending term, β is the treatment effect, D is a 
dummy that is 1 when unit i is treated in period t and 0 if not. Besides u and ε are error 
terms, u is an error term that affects the level of each unit and ε is a trending error term. 
Consider that treatment takes place in period t=1 for those treated, and never for those units 
assigned to the control group 

How does this general individual outcome expression look like for every period for a treated 
individual? 

1 1 1

0 1 0

For t=1:     
For t=0:     

i i

i i

Y u
Y u

α χ β ε
α ε

= + + + +

= + +
 

 Subtracting observation in period 1 minus that of period 0 for those treated, we obtain: 

i iY χ β εΔ = + + Δ  

This average before and after comparison is not an unbiased estimate of the treatment on 
the treated, because even though we could set ( | 1) 0iE DεΔ Δ = = , we have a trending term 

χ , which need not be zero. 

Let’s do the same exercise for those in the control group: 

1 1 1

0 1 0

For t=1:     
For t=0:     

i i

i i
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α χ ε
α ε

= + + +

= + +
 

Subtracting observation in period 1 minus that of period 0 for those in the control group, we 
obtain: 

i iY χ εΔ = + Δ  

Finally, if we substract the difference in outcome from those in the control group from the 
difference in outcomes of those in the treatment group, we would be able to identify the 
causal effect: 
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[ | 1] [ | 0]it it it itE Y D E Y D βΔ Δ = − Δ Δ = =  

So, if we compare the increase in treated units with the increase in control units we will 
obtain an estimator of the true treatment effect: the Difference-in-Difference (DiD) 
estimator, most popular as Dif-in-Dif. 

We can also express it as: 

1 0 1 0| 1 | 1 | 0 | 0DiD Y D Y D Y D Y D⎡ ⎤ ⎡ ⎤= = − = − = − =⎣ ⎦ ⎣ ⎦  

What is really important to note is that the DiD transforms our original problem into a new 
one. In our original problem we were concerned about making a counterfactual such that 
the level of baseline outcome of units assigned to treatment is comparable to that of units 
assigned to control. In our new problem we focus on making a counterfactual such that the 
trend of baseline outcome is comparable across conditions. 

 

If we want to explicitly compare the panel data estimation with the cross section one, 
assume again that there are two time periods: t=0 and t=1; and that the outcome is 
determined by the following expression: 

 tuDtY iiitit εβχα ++++=  

In the cross section analysis, we only observe one time period, say t=0, and we compare the 
outcomes for treated and untreated units. The outcomes are determined by:   

 iii uDY ++= βα0  

The variance of the mean difference estimator will depend on the variance of the error term 
u. In particular, if we assigned n0 units to each condition this variance will be:  

 ( )
0

ˆ
2ˆ

n
uVV =⎟

⎠
⎞⎜

⎝
⎛δ  

And the mean difference estimator will be consistent if the error term u is uncorrelated with 
the treatment assignment. 

In a pre-test post-test design we observe for each individual two observations and 
subtracting observation in period 1 minus that of period 0 we obtain: 

 iii DY εβχ ++=Δ  
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Now we are facing a similar problem as before. Notice that this last expression is a re-
labeling of equation iii uDY ++= βα0 . 

 

Cross Section Design (Basic) Pre-Test Post-Test Design 

iii uDY ++= βα0  iii DY εβχ ++=Δ  

 

In a pre-test post test design, the DiD estimator is the analogue to the mean difference 
estimator in a cross section; the population mean trend is the analogue to the grand mean in 
levels and the error term is now an idiosyncratic variation across time. 

The DiD estimator compares the mean increase in treated units against that of control units. 
This estimator will be consistent if ε is uncorrelated with the treatment assignment and its 
variance will be: 

 ( )
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n
VV εδ =⎟
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⎛  

From this expression it is clear that a pre-test post-test design can improve the power of the 
analysis if the variance of the trending error term ε is lower than that of the error term u. 

If we had to choose between a pre-test-post-test and a cross section design taking into 
consideration this concern, we should take into account which heterogeneity do we prefer 
to face. If we think that baseline heterogeneity will be lower, we might prefer a cross 
section design, since the estimator variance will be lower in this design. 

The post-test-pre-test design is also possible when we assign entire groups to the treatments 
(such as in the Group Randomized Trial). Each group will be surveyed twice, once before 
and once after treatment is administered. This design will perfectly control for every time-
invariant group effect, but now trending group effects will confound with the treatment 
effect. Now, the DiD estimator will compare group mean trend between treated and 
untreated units. 

Relative to the post-test-only design using a pre-test post-test design can greatly increase 
power if the variance of the trending group error is smaller than the variance of the time-
unvarying group error. 

When we assign groups to conditions, there are two different flavors of this design: the 
cohort design and cross-section design. In the cohort design we obtain a pre-test and a post-
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test observation for each member in each group. In the cross-section design, we obtain a 
pre-test and a post-test observation for each group but within each group from different 
members. In both cases the DiD estimator is valid, the only difference is that the estimator 
variance is lower in the cohort design since we can control for individual time-unvarying 
effects.  

In both, cross-section and cohort design, the model can be written as: 

 lktilklkklkti etQGDtY :::::: +++++= δχμ  

Where μ is the population outcome mean, χ is a trending term, δ is the treatment effect, and 
Dk is 1 when group k is assigned to treatment and 0 if it is assigned to control.  Gk:l stands 
for the time invariant group effect, Qk:l is a trending error term that is shared by individuals 
belonging to the same group, both errors are assumed to have zero mean. Finally, εi:kt:l is 
the residual term which is also assumed to have zero mean.  

Taking means across groups will lead to: 

 ∑−+++++=
i lktilklkklkt emtQGDtY ::

1
::: δχμ  

Subtracting group means after and before treatment lead to the following group mean 
variation 

 ( )∑∑ −+++=Δ −
i lkii lkilkklkt eemQDY :0::1:

1
:: δχ  

Taking means across conditions: 

 ( ) ( )∑∑∑ −+++=Δ −−
i lkii lkik lkkl eegmQgDY :0::1:

1
:

1δχ  

Now the DiD estimator is:  

 ( ) ( ) ( )∑∑∑∑∑∑ +−−+−+= −−
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1
::
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Now the relevant group effect is the time varying Qk:l and its variance will appear on the 
estimator variance formula.  

In the cross-section design we can assume that individual errors terms are uncorrelated and 
the DiD variance will be: 
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Where 2
:cQgσ  and  2

eσ  are the variances of the time varying error term Qk:l and the individual 

error term ei:kt:l, respectively.  

On the other hand, in a cohort design the individual error term can be decomposed in an 
individual error term plus an individual trending error term: lkilkilkti tue :::::: ε+= . In this case 
the individual error term u will cancel out and the variance of the DiD estimator becomes: 
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where ( ) 2
:: εσε =lkiV .  

Note that as the expression for the variance of the estimator is different in panel data than in 
the cross-section setting, when we estimated the mean difference estimator, the formula for 
power calculations will also differ. The main difference is that in the case of the DiD 
estimator, the time invariant group effect will cancel out, whereas the effect that is 
important now is the group-time varying effect. So we will redefine the ICC as the share of 
the variance that corresponds to the group-time effect. 

Having a pre-test might be also relevant even when we could assign units randomly to the 
control and treatment groups. This is because, although under random assignment the 
treatment and control group should be probabilistically similar in all observable and 
unobservable characteristics, it may be very useful to check that the sample we work with is 
balanced. For that purpose, one can compare a set of pre-test variables that on average 
should be similar for the two groups. Ideally the pre-test variables should be also of the 
post-test. 

On the other hand, having a pre-test is also very useful in case we have attrition, because it 
would reveal if there is differential attrition (if those who dropped are different from those 
who stayed). So having a pre-test helps us find a threat to internal validity in this cases. 

What problems can we find in applying the DiD estimator? There are some underlying 
assumptions that must be met in order to claim that the DiD estimator really captures the 
causal effect of an intervention. One main condition is that the error term is not correlated 
with treatment assignment; another one is that both the treatment and control group share 
the same trend. Finally, treatment assignment must not depend on past or future outcomes 
(it must be exogenous). 

For example, is we implement the training program to workers that have in the last year an 
income lower than a certain threshold, we will have participating in the program workers 
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that have structural characteristics that make their income low and also, workers that last 
year were affected by a negative shock. If the shocks are independent, then this year those 
workers may probably not be affected by such a negative shock and thus, the estimated 
causal effect will be overestimated. This is called the “Ashenfelter’s dip”. 

One common problem when trying to identify causal effects is simultaneity. For example, 
if we look for the effect of police on crime, we could regress crime on police and may find 
a positive correlation. This is because although more policemen in the streets tend to reduce 
crime, but the fact that cities with higher crime’s rates have more policemen can make the 
relation have the opposite sign one expects. In the presence of simultaneity, we cannot 
identify the DiD estimator. Nevertheless, in the context of program evaluation, simultaneity 
is seldom a concern because interventions are often exogenous. If they are not, as we will 
see later, we will face problems identifying the causal effect. 

The assumption that is a real concern to obtain a consistent DiD estimator in program 
evaluation, refers to trends. When we use a pre and post-test for control and treatment 
groups, we are assuming that the control group would have the same trend that the 
treatment group would have had in absence of the intervention. This assumption allowed us 
to drop out the trend term in the expressions previously studied. 

But assuming that both groups have the same trend is not trivial at all. In fact, the trend 
heterogeneity plays exactly the same role that baseline heterogeneity played in a cross 
section design. If by sheer luck we assign units with higher trends to treatment we will be 
overestimating the true ATE; and if we will underestimate ATE if we assigned units with 
lower trends. Therefore, the variance of our DiD estimate will increase with the trend 
heterogeneity. Consequently, the selection bias must be additive and time-invariant, so that 
the trend is the same in both groups. In practice, matching methods can be useful to control 
for time varying selection bias. The researcher must have a measure of the variable of 
interest of participants and non-participants based on observed characteristics in baseline 
conditions, and prior trends.  

To illustrate the use of panel data to estimate the causal effect, consider the paper by 
Berlinski et al (2009) in which the authors examine the returns to pre-primary education by 
taking advantage of a large infrastructure program aimed at increasing school attendance 
for children between the ages of 3 to 5. Between 1993 and 1999, Argentina constructed 
enough classrooms for approximately 175,000 additional children to attend preschool. The 
government used a non-linear allocation rule based on an index of unsatisfied basic needs 
constructed with data from the 1991 Census in order to target the construction to poor areas 
with low pre-primary enrolment rates. 

The growth in enrolment between 1991 and 2001 is noticeable, as the average enrolment 
rate increased to 64 percent and the number of children attending pre-primary school 
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climbed by 330,845. Comparing 1991 to 2001, all provinces increased enrolment in pre-
primary education by at least 10 percentage points. In contrast, primary school enrolment 
increased negligibly from 97 percent in 1991 to 98 percent in 2001. How much of the 
increase in enrolment was caused by the construction program?  To answer this question, 
they exploit data on preschool enrolment of children aged 3 to 5 from the Argentine 
household survey, estimating the pre-primary school enrolment as a function of the new 
places created by the rule, and time and province fixed effects.  The authors find that one 
place constructed per child in preschool age increases the likelihood of preprimary school 
attendance by 0.813. Moreover, they cannot reject the null hypothesis that the coefficient is 
one and therefore that there was full take-up of newly constructed places (this is an 
indicator that the ITT estimator may not differ from ATOT). Given that the average number 
of places constructed per child over the period was 0.09, the average increase in pre-
primary school attendance as a consequence of the program is estimated to be 
approximately 7.317 percentage points. Hence, the program explains about half of the 15 
percentage point increase in the gross enrolment rate experienced from 1991 to 2001. 

As regards the effect of pre-primary on subsequent school outcomes, the authors would, in 
principle, like to compare test scores of students who were offered a pre-primary school 
place to the counterfactual—i.e. test scores for the same students if they were not offered a 
place. Since the counterfactual is never observed and we do not have a controlled 
randomized experiment, we turn to non-experimental methods. Specifically, they exploit 
the variation introduced by the program’s expansion over time that generated differences in 
exposure by cohort and municipality. Authors add interactions between pretreatment (1991) 
preschool enrolment at the municipality level and cohort dummies to the previous model. 
The idea is to allow for idiosyncratic trends in municipality enrolment levels in pre-primary 
education. Municipalities start with different enrolment rates and therefore school 
performance may naturally grow at different rates, which could be systematically correlated 
with the construction program. However, the data reject this hypothesis as the point 
estimates do not significantly change. They find that an increase of one preschool place per 
child increases Mathematics test scores by 4.69 points and Spanish test scores by 4.76 
points. They also find that preprimary school attendance positively affected student’s 
behavioral skills such as attention, effort, class participation, and discipline. This positive 
effect on behavioral skills provides evidence of possible pathways by which pre-primary 
might affect subsequent primary school test performance as preschool education facilitates 
the process of socialization and selfcontrol necessary to make the most of classroom 
learning. Moreover, behavioral skills are as important as cognitive skills to future success 
in life. 

To test the robustness of their estimates they estimate alternative explanations for their 
findings. They have already controlled for time invariant differences between 
municipalities, schools, and cohorts, and for time varying differences at the provincial level 
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such as school policy or changes in the economic environment. They also consider an 
additional robustness test that relies on a false experiment that tests for the presence of time 
varying factors at the municipality or school level that could have affected primary school 
outcomes, while the second investigates whether the effects can be explained by the 
migration of students from private to public schools. In order to test the causal 
interpretation of the results against possible omitted time-varying municipality-level 
factors, they test whether the expansion of preschool places is correlated with the 
performance of sixth and seventh grade students. During the period studied (1995-1999), 
none of the cohorts of students in sixth and seventh grade could have been affected by the 
construction program. The authors find very small point estimates, which are not 
statistically different than zero, for both Mathematics and Spanish. Similarly they cannot 
reject the null that the effects on the behavioral measures are statistically significantly 
different than zero. These results suggest that underlying municipality or school trends in 
test scores and classroom behavior that are systematically correlated with the program are 
not driving the findings. 

 

Regression Discontinuity Design 

Even in the absence of random assignment and without using the previous Quasi-Experimental 
Design, there is still another alternative researches can use to identify treatment effects. It could be 
the case that units are not randomly assigned to treatment, but on the score each unit gets in an 
assignment variable. This variable should be measured at the pre-test, and the researcher must 
stipulate a cut-off value, so that all the units with score above that cut-off will receive treatment and 
the ones below will belong to the control group (or vice versa). This is called Regression 
Discontinuity Design (RDD).  

For examples, units willing to participate are divided into two groups according to whether or not a 
pre-intervention measure exceeds a known threshold, but only units scoring above that threshold are 
assigned to the program. 

For identification at the cut-off point to hold it must be the case that any discontinuity in the 
relationship between the outcome of interest and the variable determining the treatment status is 
fully attributable to the treatment itself. Then, in the neighborhood of the cut-off point or threshold, 
this technique provides some characteristics analogue to an experiment. The comparison of mean 
outcomes for participants and non-participants at the margin allows one to control for confounding 
factors and identifies the mean impact of the intervention, but only locally at the cut-off for 
selection into treatment.  

The assignment to treatment must be only done on the bases of the assignment variable, which 
plays a crucial role in RDD. The selection criteria must be strictly followed as if it were a random 
rule like the toss of a coin. It is necessary that the assignment variable is not caused by treatment 
(that is why it should be measured before the intervention takes place) and must not be correlated 
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with outcome. The assignment variable can even be a pre-test, but not necessarily; in fact it can be 
not related at all with the post-test variable (it could be year of birth, order of application to a 
program, etc.). Apart from these characteristics, it must be ordinal and preferably continuous 
because it makes it more plausible to find a regression line between the assignment and outcome 
variables at both sides of the cut-off point. If we used a binary variable to select units into treatment, 
we will not be able to estimate a regression line for either group; furthermore, there will be a high 
correlation between the assignment variable and the treatment dummy. 

The choice of the cut-off point is also very relevant to the identification of the causal effect in the 
margins of it. Sometimes the researcher has the chance to choose it, and other times it has to do 
with exogenous factors not controlled by the researcher. We have to take into consideration that our 
aim is to estimate a regression line at both sides of the cut-off, so it should not be too low or to high, 
in order to make sure that there are enough observations at both sides. Ideally it could be place at 
the mean of the assignment variable. In addition to these, it is important to specify correctly the type 
of relationship that there is between the assignment and outcome variable at both sides; it could be a 
line or any functional form, such as a polynomial of a higher level. 

RDD can be easily compared to randomized experiments in which assignment to treatment is done 
by chance instead of using a fixed rule. To estimate the causal effect in the case of randomized 
experiments, as we have seen throughout the previous chapters, we compare the post-test means of 
the treatment and control group, under the underlying assumption that both groups are 
probabilistically similar so there is no selection bias or treatment heterogeneity. In RRD, we do 
something analogue, but instead of comparing mean outcomes, we compare regression lines at both 
sides of the cut-off point. This is a Quasi-Experiment, in fact! When there is no treatment, we 
assume that the regression lines are equivalent instead of claiming that the mean of the post-test is 
the same. However, note that we need more observations in RDD than in a randomized experiment, 
to attain the same statistical power. 

There are two kinds of RDD: sharp (which is the case described above) and fuzzy (when there is 
imperfect compliance with the assignment rule at the cut-off point). More formally, in a RDD we 
need an observable assignment variable, that will be S. This variable will have a cut-off point in 
which we know that the probability of being assigned to treatment changes from 0 to 1 (or from 1 to 
0), in the case of a Sharp RDD; and changes discontinuously in a Fuzzy RDD. 

The condition to identify the causal effect is that Y0 conditional on S is a continuous function of S at 
s , which means stating that the outcomes of those that not receive treatment show no discontinuity 
at the cut-off point. Or, in other words, that the discontinuity is only the consequence of treatment. 

Let’s deduce the identification condition. Remember that S is the observable assignment variable, 
and let s be the cut-off point. So units marginally below and above s will be denoted as s − and 
s + respectively. Then, for s be the cut-off point: 

Pr( 1| ) Pr( 1| )D s D s+ −= ≠ =  

Imagine that above the cut-off point we assign treatment, so: 
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Pr( 1| ) Pr( 1| ) 0D s D s+ −= − = >  

And especially for a Sharp RDD:  

Pr( 1| ) Pr( 1| ) 1D s D s+ −= − = =  

Returning to our expression of the outcome: 

Yi (u)= Y0 (u)+ δ D (u) 

We can re-express it as: 

0 0

0 0

E Y |  -E Y | E Y  |  -E Y  | + E D(s)| -E D(s)|

= E Y  |  -E Y  | + E |

s s s s s s

s s sδ

+ − + − + −

+ − +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

The condition to identify the causal effect in a Sharp RDD is that Y0 conditional on S is a 
continuous function of S at s , which means stating that the outcomes of those that not receive 
treatment show no discontinuity at the cut-off point. This would identify the causal effect on those 
in the right hand-side of the cut-off. To extend the condition to those in the left-hand side, we 
should state that Y1 is continuous. Those conditions would be: 

0 0

1 1

E Y  |  =E Y  |

E Y  |  =E Y  |

s s

s s

+ −

+ −

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 

These implies that if Y is continuous on S in the cut-off, then the outcomes and the treatment 
assignment are orthogonal given S: 

0 1( , ) |Y Y D S s⊥ =  

Then, we could identify the average treatment effect on the treated only in the neighborhood of the 
cut-off point: 

[ ]E | E Y |  -E Y |s s sδ + −⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦  

The treatment effect can be estimated by the outcomes of the units on the neighborhood of the cut-
off point if the sample size is large enough. If it is not, a function of Y on S have to be estimated on 
each side of the threshold, using all the observations lying on both sides of it. 

The Fuzzy RDD appears when compliance in the threshold is not complete. Thus, some units in the 
upper side although must belong to the treatment (control) group, are observed in the control 
(treated) group, and the same happens in the other side of the cut-off point. In this design the 
identification conditions for the causal effect stated for the Sharp RDD are no longer enough. This 
is because the treatment status does not only depend on the assignment variable (which we called S) 
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but on unobservable variables. Then, we need to state that at least in the neighborhood of the cut-off 
point, the assignment variable is independent of the potential outcomes, and only affects them 
through the treatment D. This situation brings us again to our familiar IV framework, where S will 
be the instrument, D is the endogenous treatment status because it affects the outcomes and also is 
affected by unobservables (not ruled out by the cut-off in S as in the Sharp Design) and Y is the 
observed outcome. 
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