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Abstract
We address international convergence in carbon dioxide emissions per capita and per value
added derived from emission inventories based on production and consumption patterns.
We propose a Bayesian structural model that accounts for heteroscedasticity and endogene-
ity between emissions and economic growth, and tests for the existence of group-specific
convergence via shrinkage priors. We find evidence for country-specific conditional conver-
gence in all emission inventories, implying a half-life of 2.7–3.1years for production-based
emissions and 3.6–4.7years for consumption-based emissions. When testing for global con-
vergence without allowing for individual-specific convergence paths, the half-life of CO2 per
capita increases to 15–26years, whereas emission intensities show a half-life of 44–45years.
Our results highlight the current incompatibility between emission targets and economic
growth and the need for faster diffusion of green technologies. Moreover, there is no evi-
dence for specific convergence dynamics in the European Union, the OECD, or the countries
that are subject to binding emission constraints specified in the Kyoto Protocol. The institu-
tional frameworks implemented in industrialized countries did not induce faster convergence
among developed economies.
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1 Introduction

Global warming and its consequences are at the center of current policy debate on the sustain-
ability of economic development. The Paris Agreement stipulates holding the global average
temperature below 2°C above pre-industrial levels to bring climate change under control;1

for this to happen, the 194 countries that signed the agreement are compelled to reach the
global peak of greenhouse gas (GHG) emissions as soon as possible (Paris Agreement, Art.
2 and 4). The underlying question is how to make economic growth compatible with limited
or decreased pollution, particularly GHG emissions.

The Environmental Kuznets Curve (EKC) predicts that pollution increases with rising
income per capita and falls after a peak in emissions has been reached. However, the existence
of a turning point in GHG emissions after which emissions start to decrease with economic
growth has not been unanimously confirmed by empirical research. Especially for carbon
dioxide (CO2) emissions the existence of such peak has often been rejected.2 Against this
background, it is important to know whether global carbon emissions will eventually reach
a limit; only then the growth rate of atmospheric concentrations of CO2 will stabilize.

The patterns of convergence of CO2 emissions per capita towards a certain emission level
and the height of this level have important implications for the design of the international
regulatory framework. Reliable information on whether the steady state of emissions is
global or country-specific and on how long it will take for countries to reach this steady
state can strengthen the ongoing policy debate. Related to this, the convergence dynamics of
carbon emissions derived from both national production and consumption activities should
be better understood when revising environmental responsibility, as they characterize the
path of emissions associated with further economic development in a globalized context.
Increasingly fragmented value chains allow the geographical location of production stages
to differ from the place of final consumption. A mere focus on territorial-based emissions
neglects the importance of trade in intermediates and carbon leakage, i.e. the shift of highly
pollutant industries from countries with stringent environmental regulation to countries with
less strict regulation (e.g. Aichele and Felbermayr 2015; Babiker 2005; Fernández-Amador
et al. 2016).

In addition, it is relevant to understand to what extent the dynamics of international
convergence of emissions per capita is driven by convergence in carbon efficiencyworldwide.
The adoption of more environmentally friendly technologies will lower carbon intensities,
which is particularly relevant for developing countries, as they need to combine remarkable
economic growth targets with emission reduction goals.3 If international technology transfers
occur and emerging economies adopt greener production methods, the global production
network will eventually become more sustainable, and CO2 emissions per value added will
converge across countries. This will in turn promote convergence in emissions per capita.

1 See Knutti et al. (2015) for a critical analysis of the 2 °C target.
2 Empirical studies that investigate the existence of an EKC in CO2 emissions usually fail to find such a
relationship in samples covering a large group of countries (see e.g. Stern 2004, and Stern 2017, for exhaustive
surveys, or Fernández-Amador et al. 2017, for a survey of empirical applications). Aslanidis and Iranzo (2009)
and Fernández-Amador et al. (2017) provided evidence that the income elasticity of CO2 emissions decreases
as income per capita rises above a threshold level though emissions continue growing, what challenges the
sustainability of economic growth.
3 The Paris Agreement recognizes the need to support developing countries in order to facilitate the effective
implementation of the objectives identified in the Agreement (Paris Agreement, Art. 2).
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The assessment of convergence in CO2 emissions has received considerable attention
in the empirical literature.4 Most studies tested for convergence in CO2 per capita across
different groups of countries, but their results remain broadly inconclusive.5 By contrast, a
smaller number of studies investigated convergence in carbon efficiency, pointing invariably
towards the existence of convergence across countries.6 However, all these studies focused
on production-based emissions, while cross-country convergence in CO2 embodied in con-
sumption has not yet been investigated.7

We evaluate international convergence in CO2 emissions per capita and per value added
derived from national production- and consumption-based inventories worldwide. We put
forward a Bayesian test for β-convergence that is based on the theoretical models by Brock
and Taylor (2010) and Ordás Criado et al. (2011). Our model also allows for potential group-
specific dynamics of convergence using Bayesian shrinkage priors. Our convergence test is
robust to heteroscedasticity and accounts for potential endogeneity between the growth rates
of emissions and GDP per capita by means of instrumental variables (IV) estimation.

Our contribution is twofold. First, we assess international convergence in production- and
consumption-based carbon emissions for the first time by using a comprehensive dataset
on comparable CO2 emission inventories published, and recently updated, by Fernández-
Amador et al. (2016). The dataset covers 178 economies (grouped in 66 countries and 12
composite regions) and extends over 17 years after the ratification of the Kyoto Protocol,
a period marked by the implementation of environmental policies against climate change
in developed countries. The focus on both inventories allows to account for the increasing
detachment between CO2 per capita generated by production activities and CO2 embodied
in final consumption in a period of rapidly expanding global production networks, which
permits cross-border sourcing of carbon in final consumption. In addition, we analyze CO2

emissions per value added (carbon intensity or efficiency) and draw conclusions on whether
the detected patterns are driven by efficiency effects. While CO2 per capita offers important
insights on convergence stemming from the expansion of production or consumption in a
country, convergence in CO2 intensity provides information on whether countries that use
more pollutant production methods eventually catch up with environmentally more efficient
economies.

Second, our structuralmodel presents some interesting features. It uses aBayesian stochas-
tic search variable selection prior (SSVS, George and McCulloch 1993) to test for the
existence of group-specific convergence dynamics. The groups comprise the EuropeanUnion
(EU), the OECD, and the countries that ratified Annex B to the Kyoto Protocol. The model
is robust to cross-sectional heteroscedasticity—it is based on a scale mixture of multivari-
ate normals, where the hyperparameter governing the distribution of the individual-specific

4 See Pettersson et al. (2014) and Stern (2017) for comprehensive surveys of the literature on convergence in
pollution emissions.
5 The findings of the literature range from evidence for convergence (Strazicich and List 2003; Nguyen 2005;
Ezcurra 2007; Romero-Ávila 2008; Lee et al. 2008;Westerlund and Basher 2008; Lee and Chang 2009; Brock
and Taylor 2010; Jobert et al. 2010; Huang and Meng 2013; Yavuz and Yilanci 2013; Anjum et al. 2014; Hao
et al. 2015; Wu et al. 2016; Zhao et al. 2015) over the existence of convergence clubs (Nguyen 2005; Aldy
2006; Lee and Chang 2008; Panopoulou and Pantelidis 2009; Barassi et al. 2011; Ordás Criado and Grether
2011; Camarero et al. 2013; Herrerias 2013; Wang et al. 2014; Burnett 2016) to no evidence for convergence
(Aldy 2007; Barassi et al. 2008; Nourry 2009).
6 See Anjum et al. (2014), Camarero et al. (2013) and Panopoulou and Pantelidis (2009).
7 Aldy (2007) investigated convergence of CO2 emissions across US states. This is the only study so far
that also covers consumption inventories. The author did not find evidence for convergence for either CO2
production or for CO2 consumption per capita. In contrast to Aldy, our study covers economies at different
development states, thus being the first one to evaluate global convergence patterns in CO2 consumption.
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variances is estimated endogenously. Furthermore, it formulates a flexible Cholesky-prior to
instrument potentially endogenous regressors. This prior was proposed by Lopes and Polson
(2014) in the framework of normal distributions, and, to the best of our knowledge, our study
is the first to apply it in the context of scale mixtures of multivariate normals.8

Our results point to the existence of country-specific conditional convergence in all four
emission inventories. The speedof convergence implies a half-life of 2.7–3.1 years for produc-
tion inventories and 3.6–4.7 years for CO2 consumption. Convergence towards global steady
states, though conditioned on political and economic structures, is much slower, implying
a half-life of 15 and 26 years for emissions from production and consumption per capita,
respectively, and 44–45 years for emission intensities. Moreover, we do not find support for
the existence of group-specific convergence dynamics for countries belonging to the OECD,
the EU, or the Annex B to the Kyoto Protocol. These findings evince the ineffectiveness of
environmental policies implemented in developed economies and pose doubts on the feasi-
bility of an effective global action against climate change.

The next section reviews the literature on convergence. Section 3 describes the data. In
Sect. 4, we explain the specification of the convergence test. Section 5 presents the results
and Sect. 6 concludes.

2 Literature Review

Convergence tests received considerable attention in the empirical literature evaluating the
predictions of the Solow (1956) growthmodel. Early studies tested whether countries starting
out from low income levels experienced higher subsequent growth rates, either conditional
or not conditioned on control variables (β-convergence).9 Later studies suggested that β-
convergence could be driven by regression to the mean (see Friedman 1992; Quah 1993)
and tested whether the dispersion of income across countries was narrowing over time
(σ -convergence).10 Yet, Sala-i-Martin (1996) pointed out the merits of β-convergence for
providing insights into growth dynamics. Although β-convergence is not sufficient for σ -
convergence, it is a necessary condition (Sala-i-Martin 1996; Young et al. 2008) and provides
valuable information whenever alternative tests for convergence cannot be applied.11

Besides cross-sectional convergence tests, also time-series approaches have been devel-
oped. Several authors investigated stochastic convergence of income levels via unit root

8 Salois and Balcombe (2015) proposed a related model in the context of cross-sections, where t-distributed
errors in an IV-model are represented by weighted errors of normals. Their modelization shares with ours the
use of a scale mixture of normals representation, though the authors do not perform Cholesky-rotation of the
system to represent it as a recursive system of equations but condition the weighted errors on each other and
use a Wishart prior for the variance–covariance matrix.
9 Earlier studies focused on unconditional convergence, while more recent studies tested for conditional
convergence, i.e. convergence after allowing for heterogeneity across countries by accounting for additional
determinants of economic growth. While unconditional convergence was often found for OECD countries, it
was generally rejected for samples including non-OECD countries. If countries converge to different steady
states, unconditional convergence models might result in biased coefficient estimates because the model used
for estimation ismiss-specified (Barro and Sala-i-Martin 2004). See for example Baumol (1986), Barro (1991),
Barro and Sala-i-Martin (1992), Mankiw et al. (1992) and Barro and Sala-i-Martin (2004).
10 See e.g. Barro and Sala-i-Martin (1992), Quah (1993), Sala-i-Martin (1996) and Young et al. (2008).
Phillips and Sul (2007b) developed a test for identifying club-convergence groups, which corresponds to a
test for conditional σ -convergence (see Phillips and Sul 2007b). Phillips and Sul (2007a) provided a short
empirical application of the test in the context of economic growth convergence.
11 See e.g. Ravallion (2003) who applied β-convergence tests to international income inequality.
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testing; that is, whether income shocks are of permanent or temporary nature.12 While these
approaches became increasingly popular as more data became available over time, Bernard
and Durlauf (1996) pointed out that they are grounded on the assumption that the economies
in the sample are near their long-run equilibria. In this sense, the use of time-series tests may
be invalid if the data are driven by transition dynamics.13

Similar to the Solowmodel for economic growth, there are theoretical models that predict
convergence of pollution emission levels across countries over time (e.g. Brock and Taylor
2010; Ordás Criado et al. 2011). Like the Solow model, these boil down econometrically to
an equation of conditional β-convergence.

Empirical studies on convergence in CO2 per capita derived from production activities
led to inconclusive findings. For OECD countries, Strazicich and List (2003), Romero-Ávila
(2008), Lee et al. (2008), Lee and Chang (2009), Jobert et al. (2010), and Yavuz and Yilanci
(2013) found evidence for convergence. Lee and Chang (2008) and Barassi et al. (2011)
reported convergence only for a subgroup of countries, and Barassi et al. (2008) did not
detect evidence for convergence.14

A growing number of studies included developing countries in their samples. Ezcurra
(2007), Westerlund and Basher (2008), Brock and Taylor (2010), and Anjum et al. (2014)
provided evidence for convergence across countries of different income status. Panopoulou
andPantelidis (2009),OrdásCriado andGrether (2011), andHerrerias (2013) detected several
convergence clubs,15 and Nguyen (2005) and Aldy (2006) found convergence only in sub-
groups or clubs of developed economies. Nourry (2009) failed to detect evidence for cross-
country convergence.

Some authors focused on convergence across regions in China and states in the US. For
China, Huang and Meng (2013) detected overall convergence and Wu et al. (2016) found
evidence for club convergence. For the US, Burnett (2016) found a club of 26 converging
states, while convergence for the US as a whole was rejected. While all these studies focused
on CO2 production inventories, Aldy (2007) additionally assessed consumption of CO2 per
capita in the US states but did not find convergence in either measure.

The heterogeneous findings of the literature on CO2 convergence are in line with the
inconclusive evidence for the existence of an environmental Kuznets curve (EKC). The EKC
hypothesis suggests that as national income levels rise, pollution first increases with income,
but after a certain level of income is reached this mechanism is reversed.16 If income lev-
els are related to CO2 emissions, the existence of an EKC relationship would ultimately
lead to emission convergence (Stern 2017). However, even though empirical studies find
a positive relationship between economic growth and CO2 emissions, the evidence favor-
ing an EKC-type relationship is restricted to time-series or panel studies covering OECD
economies.17

12 See e.g. Carlino and Mills (1993), Quah (1993), Bernard and Durlauf (1996) and Evans and Karras (1996).
13 See also Panopoulou and Pantelidis (2009), Jobert et al. (2010) and Ordás Criado and Grether (2011) for
surveys on β-, σ - and stochastic convergence.
14 Studies for OECD countries focused mainly on stochastic and β-convergence. For more details on the
concept of convergence used by the respective studies, see Table A.1 in the Online Appendix.
15 Panopoulou and Pantelidis (2009) and Herrerias (2013) applied the Phillips and Sul (2007b) test for conver-
gence clubs. Ordás Criado and Grether (2011) found evidence for income-specific and regional convergence
clubs especially for the sub-period 1980–2000.
16 See Dasgupta et al. (2002), Kaika and Zervas (2010), and Stern (2004, 2017) for reviews, and Fernández-
Amador et al. (2017) for a summary of the most recent evidence.
17 Schmalensee et al. (1998) is an exception, finding support for an inverse-U relationship using non-
parametric techniques. More recently, Aslanidis and Iranzo (2009) and Fernández-Amador et al. (2017) found
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Improvements in carbon efficiencies (i.e. CO2 per value added) are an important require-
ment for reaching the turning point postulated by the EKC. High-income countries generally
are more carbon efficient than less developed economies (Fernández-Amador et al. 2016).
This can be explained by their stronger preferences for a cleaner environment, better access
to cleaner technology and potential for carbon leakage. Carbon leakage will impede conver-
gence in carbon emission intensities, as firms with larger emission intensity might relocate
to countries with less stringent environmental regulation. However, if the rapid increase in
international trade induces transfers of green technology to less developed countries, their
carbon efficiency could improve more rapidly (Grossman and Helpman 1995), which would
contribute to convergence in carbon intensities. Thus, although most studies focused on
CO2 emissions per capita, evaluating convergence in carbon intensities provides additional
insights in the convergence patterns across countries.18

Among the existing studies on convergence in the intensity of CO2 emissions from pro-
duction activities, Camarero et al. (2013) identified four convergence clubs among 22 OECD
countries using the test for club-convergence developed by Phillips and Sul (2007b). Anjum
et al. (2014) and Panopoulou and Pantelidis (2009) provided evidence for convergence in
a panel of 136 and 128 countries, respectively. Focusing on Chinese regions, the results of
Hao et al. (2015) and Zhao et al. (2015) suggested convergence of emission intensity, while
Wang et al. (2014) found evidence for club convergence.19

3 Data

CO2 emissions per capita and per value added derived from production and consumption
inventories are available from the emissions database constructed by Fernández-Amador et al.
(2016). Following Fernández-Amador et al. (2016), we define carbon intensities as carbon
per value added rather than per GDP. For production inventories, value added is computed
as value added embodied in production, whereas for consumption-based inventories, it is
calculated as value added embodied in consumption. Therefore, emission inventories and
value added are measured at the same stage of the supply chain. The dataset consists of
a balanced panel of national production- and consumption-based carbon dioxide emission
inventories from fossil fuel combustion covering 66 countries and 12 composite regions
(encompassing a total of 178 economies) over the years 1997, 2001, 2004, 2007, 2011 and
2014 (468 observations).20 It relies on input–output, trade, and energy data of several releases
of the Global Trade Analysis Project (GTAP) database.

To test for the presence ofβ-convergence,we compute the growth rates of the four emission
inventories, which we consecutively use as dependent variables in the empirical analysis.
Since the data-points are unequally spaced in time (3–4 years), we calculate the average

Footnote 17 continued
that the income-elasticity of CO2 emissions decreases slightly after income per capita passes a certain thresh-
old, such that relative decoupling increases with economic growth, though there is no evidence of absolute
decoupling and an EKC relationship. Fernández-Amador et al. (2017) also provided evidence for a similar
pattern in CO2 consumption-based inventories.
18 Anjumet al. (2014) reported that the negative correlation between initial emissions and subsequent emission
growth is stronger for CO2 intensity than for CO2 per capita.
19 All these studies define CO2 intensity as CO2 per GDP. In our analysis we refer to CO2 intensity as CO2
per value added.
20 A description of the countries included in the composite regions is available in Fernández-Amador et al.
(2016). The dataset has been recently extended by the authors to cover the year 2014.
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growth rate of emissions between years t − s and t , where s is the number of years between
two observations (see Ravallion 2003, for a similar methodology).21 The resulting average
growth rates allow to evaluate convergence in the large-N, small-T panel dataset, for which
time-series methods cannot be used.22 Furthermore, by using average growth rates, we avoid
to capture short-term fluctuations in emissions that could result in an upward bias of the
estimates of the convergence speed (see Ordás Criado et al. 2011).

Our baseline control variables are derived from the theoreticalmodel byOrdásCriado et al.
(2011). They comprise the lagged level of CO2 emissions, which should capture potential
convergence forces, the growth rate of purchasing-power parity (ppp) adjusted real GDP per
capita over the period considered, which should capture the scale effect of economic growth
on emissions, and the lagged level of ppp-adjusted GDP per capita, as a proxy for capital per
efficient labor (see Ordás Criado et al. 2011, for details). GDP per capita is sourced from the
World Development Indicators (WDI) dataset.

To limit potential omitted variable bias (see Barro and Sala-i-Martin 2004), we add a large
set of additional control variables capturing economic, structural, and institutional character-
istics of the individuals in the sample, and include individual- and time-dummies (see Table
A.2 in the Online Appendix for details on the variable definitions and data sources). We
derive trade flows as a share of GDP and value added shares of different sectors of the econ-
omy (agriculture, energy, light manufacturing, heavy manufacturing, textiles, water services,
construction, trade and transport, and remaining services) from the GTAP database.23 Data
on population density, the share of fossil fuels and nuclear energy in total electricity produc-
tion, and rents from fossil fuel production as a share of GDP are available from the WDI
database. A political regime index, which may channel citizens’ preferences for a cleaner
environment, is sourced from the Polity IV database (see Farzin and Bond 2006). Finally, in
order to investigate group-specific convergence patterns, we generate dummy variables for
members of the EU, OECD, and Annex B to the Kyoto Protocol.

4 Econometric Model

We develop a Bayesian test for β-convergence as an extension of the model proposed by
Ordás Criado et al. (2011).24 The model specification is a dynamic panel that enables to test

21 This corresponds to calculating average annual growth rates. For a similar method see Ravallion (2003),
who accounts for the unequal spacing in time between measures of income inequality for large-N, small-T
panel data by regressing the difference in inequality between time t and the initial period t1 on a constant and
initial inequality at time t1, both multiplied by a time-trend (t − 1). In contrast to Ravallion’s data, our panel
is balanced in the sense that for every individual we observe all variables at the same points in time. Thus, we
can also exploit the variation of the data across time and use initial emissions in year t − s instead of in year
t1 as a regressor.
22 Bernard and Durlauf (1996) pointed out that the power of time-series tests may be weak when the dynamics
do not occur near the steady state. In this sense, time-series approaches to test for stochastic convergence may
not be particularly suitable in our context, since data on CO2 emissions covering a global sample of countries
are very likely to be driven by transition dynamics rather than being near the steady state.
23 Detailed information on the sector aggregation from the original GTAP sectoral disaggregation is available
from the authors upon request.
24 Ordás Criado et al. (2011) tested for convergence in sulfur oxides and nitrogen oxides. Their theoretical
model assumes optimal control of pollution emissions at the national level, making it particularly suited for
applications to local air pollutants. Nevertheless, the structure of the empiricalmodel they specify is compatible
with the green Solow model by Brock and Taylor (2010), which the authors applied to CO2 emissions. Ordás
Criado et al. (2011) regressed the average growth rates of emissions over the period t − 5 to t on the level of
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for the existence of specific convergence groups, accounts for endogeneity of the regressors,
and allows for cross-sectional heteroscedasticity of the error terms.

Let Eit be, alternatively, the natural logarithm of CO2 emissions per capita or per value
added in country i at time t , where i ⊆ [1, . . . , N ] and t ⊆ [1, . . . , T ], and let Gi,t,s =
(Ei,t − Ei,t−s)/s be the average growth rate of Ei over the period t − s and t . The test
for convergence is defined by the following recursive structural model with instrumental
equation:

Gi,t,s = βEi,t−s + π0gi,t,s + π1Yi,t−s

∑

r

[
θr zr ,i,t−s

] +

+δt + αi +
∑

j

[
β j d j Ei,t−s

] + ε1,i t (1)

gi,t,s = αiv + βivL(gi,t,s) + ε2,i t (2)

(ε1,i t , ε2,i t ) ∼ N (0, 	ωi ) (3)

The (average) growth rate of emissions (Gi,t,s) over t − s and t depends on the logarithm
of the level of emissions in country i at period t − s (Ei,t−s), the (average) growth rate
of real GDP per capita over the period t − s and t (gi,t,s), the logarithm of real GDP per
capita of country i in t − s (Yi,t−s), a set of control variables as described in the data section
(zr ,i,t−s), time-effects (δt ), and individual-dummies (αi ). The d j ’s are dummy variables for
group membership in the EU, OECD, and Annex B to the Kyoto Protocol. The parameter
associated with Ei,t−s is the parameter of interest; in particular, β < 0 provides evidence for
conditional β-convergence.

The relationship between the growth rate of emissions and the growth rate of GDP per
capita is potentially endogenous. Thus, we follow Barro and Sala-i-Martin (1992) and instru-
ment the growth rate of GDP per capita with its growth rate in the previous period, denoted
L(gi,t,s), as described in Eq. (2), where L(·) is the lag operator.25

The priors for the parameters in (1) and (2) are collected in the following set of equations:

β ∼ N (0, τ ) (4)

π0, π1, θr , δt , αiv, βiv ∼ N (0, φ) (5)

αi ∼ N (0, ψ) (6)

β j ∼ (1 − γ j )N (0, κ0) + γ j N (0, κ1) (7)

γ j ∼ Bernoulli(p) (8)

ω−1
i ∼ �(ν/2, ν/2) (9)

The prior of β follows a normal distribution with zero mean and precision τ , where
τ = (2/3)2, such that the case for unit root in the original dynamic model of emissions

Footnote 24 continued
emissions at the initial period of the growth rate (t − 5), the growth rate of GDP over t − 5 and t , GDP in
t − 5, and time- and individual-dummies using OLS and a non-parametric model. The authors also addressed
endogeneity between emissions and GDP by instrumenting GDP and its growth rate with their lagged values
(following Barro and Sala-i-Martin 1992). Brock and Taylor (2010) developed a theoretical model that also
predicts conditionalβ-convergence, which the authors applied to CO2 emissions. AlthoughBrock and Taylor’s
model is applicable to global pollutants, in our empirical approach we follow Ordás Criado et al. (2011) since
their empirical analysis makes use of the panel structure of the data and accounts for the potential endogeneity
of GDP per capita.
25 For the first period in our sample, 1997–2001, we use the average growth rate for a period of the same
length, 1993–1997, as instrument.
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is not ruled out.26 The priors of the parameters π0, π1, θr , δt , αiv , and βiv follow a normal
distributionwith zeromean and precisionφ = 0.2.27 We estimate the individual-effects using
the dummy variables approach, where αi is normally distributed with precision ψ = 0.5.28

An intercept of the model can be retrieved as α = 1
N

∑N
i αi .

Equations (7) and (8) characterize a hierarchical SSVS shrinkage prior (George and
McCulloch 1993) that grants flexibility for the data to discriminate among models including
group-specific convergence dynamics (for EU, OECD, and Annex B membership). Each
group-specific prior on β j is modeled as a mixture of two normals with different precisions
κ0 and κ1. κ0 > κ1 so that when γ j = 0, β j is restricted to be estimated around 0, whereas
when γ j = 1, β j remains unrestricted. We set κ0 = 10 and κ1 = 1. To reflect the absence of
prior beliefs about the existence of specific group convergence we set p = 0.5.

The prior elicited in Eq. (9) defines the distribution of the variances of the individual-
specific error terms (ε1,i t , ε2,i t ). Each individual-specific variance parameter takes the form
	ωi , such that the model exhibits cross-sectional heteroscedasticity. The equation is defined
in terms of precisions (inverse of the variances). The gamma prior for the precisions in Eq.
(9) is equivalent to a χ2(ν)/ν and characterizes the model as a scale mixture of normals,
where the weights are individual-specific.29

The hyperparameter ν is estimated endogenously with prior

ν = �u� (10)

u ∼ Exp(1/λ), u ∈ [3, 60], (11)

where the function �·� rounds the values of u to the nearest integer. Exp in Eq. (11) stands
for an exponential distribution where the rate parameter λ is set to 25, such that the density
function of ν is centered at a mean of 25, giving substantial prior weight both to fat-tailed
error distributions (ν < 10) and error distributions which are effectively Normal (ν > 40).
The estimation of ν renders the specification in (1)–(3) rather flexible. Small values of ν

will yield heteroscedasticity-robust parameter estimates, while as ν increases the errors’
distribution will approach normality (homoscedasticity). We truncate the prior for ν such
that it is contained in the interval [3, 60].30

26 In the original dynamic model of emissions, once we undo the average growth rate, the relevant parameter
for the case of regular sampling every period is (1 + β). The precision elicited ensures that the hypothesis of
an unit root in our autoregressive model with explanatory variables is not an extreme event in our prior for β.
27 The precision is defined as the inverse of the variance. A precision of 0.2 implies a variance of 5.
28 Note that the precision of the individual-dummies is larger than the precision of the rest of the parameters. A
uniform prior on the individual fixed effects would lead to improper posterior distributions for the parameters
of interest, while very diffuse priors would lead to very slow convergence of the MCMC algorithm used for
inference (see e.g. Lancaster 2008, Chap. 7).
29 Scale mixture of normals with the weights specified as in (9) are equivalent to a t-student distribution (see
e.g. Andrews and Mallows 1974; West 1987; Ding 2016). The degrees of freedom of the t-student are equal to
the hyperparameter governing the distribution of the weights ωi , ν. With growing ν the distribution converges
to a normal distribution, as less probability mass is concentrated at the tails of the distribution. The prior for the
weights in the scalemixture of normals,ωi , together with the prior for the components of the variancematrix	

that we will define below, imply a form of cross-sectional heteroscedasticity of the gamma type (Andrews and
Mallows 1974; Geweke 1993; Koop 2003, Chap. 6; Lancaster 2008, Chap. 3). There are two main advantages
of modeling the problem in terms of scale mixture of normals rather than as a t-student distribution. The first
one is that the type of heteroscedasticity, cross-sectional in our case, can be explicitly stated. The second is
that it is less computational demanding for the numerical algorithm to estimate the posterior distributions of
the parameters.
30 We regard the priors for the parameters of interest (β, π0, π1, {θr }, {δt }, αiv, βiv, {αi }, {β j }) as informa-
tive. Geweke (1993) shows that under informative (normal) priors for the slopes, both the first and the second
moments of the slopes exist. When the priors of the slopes are uninformative, ν > 2 ensures existence of the
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In order to complete the prior for the covariancematrix in (3),wepropose aCholesky-based
prior for	. Lopes and Polson (2014) have shown the better performance of this type of prior
compared to the more widely used approach of specifying an inverted Wishart prior for 	 in
IV-models in the context of normal-distributed errors.31 More specifically, the components
of the error vector are modeled based on the recursive conditional regressions arising from
the Cholesky decomposition of 	 = ADA′, such that D = diag(	1|2, 	22) and A is an
upper triangular matrix with ones in the main diagonal and upper triangular component
a12 = 	12/	22. However, the specific modelization of heteroscedasticity by means of scale
mixture of normals requires taking into consideration the effect of theCholesky-rotation in the
individual-specific term of the variance (see Ding 2016).32 Thus, Eq. (3) can be re-written in
recursive conditional form, using the specification of the conditionals of a multivariate scale
mixture of normals.

ε1|2,i t ∼ N
(
a12ε2,i t , 	1|2ω1|2,i

)
(12)

ε2,i t ∼ N
(
0, 	22ω2,i

)
, (13)

where	11 = 	1|2+	2
12/	22.Wemust specify priors for	22, the conditional variance	1|2,

the parameter a12, which calibrates the strength of the correlation between ε1,i t and ε2,i t , as
well as the weights in the instrumental equation, ω2,i , and in the main equation conditional
on the instrumental equation, ω1|2,i . We assign 	−1

22 and 	−1
1|2 a gamma prior with shape

and scale parameters a, b = 0.001 so that we remain uninformative about the precision of
the model. a12 follows a normal prior centered at zero and with precision τ = 0.2. Finally,
the priors for ω−1

2,i and ω−1
1|2,i also follow a gamma distribution with hyperparameter ν as

defined in Eq. (10) and, where dm = ε′
2i	

−1
22 ε2i is the square Mahalanobis distance in the

instrumental equation, on which the main equation is conditioned. That is,

	−1
22 , 	−1

1|2 ∼ �(a, b) (14)

a12 ∼ N (0, τ ) (15)

ω
−1
2,i ∼ �(ν/2, ν/2) (16)

ω
−1
1|2,i ∼ � ((ν + 1)/2, (ν + dm)/2) , (17)

The relationship between the location and the rate parameters of the gamma priors in (16)
and (17) deserves special attention: the location parameter of ω

−1
1|2,i has increased by 1/2 as

compared to the location parameter governing ω
−1
2,i , what reduces the heavy-tailedness of

the (conditional) main equation. The rate parameter in (17), (ν + dm)/2, will be larger in

Footnote 30 continued
first moments, while ν > 4 ensures existence of the second moments. Thus, the truncation defined contains
roughly 80% of the density around the mean of the prior, while ensuring existence of first moments even in
the case of noninformative priors for the parameters of interest.
31 We explain the derivation of the IV-prior in terms of covariance matrices because this is common in
the literature, though the specification of the priors is in terms of precisions, as carried out in the software.
Alternatively, we could use an inverted Wishart prior for 	, 	 ∼ IW (v0, 	0), with parameters v0 and 	0.
Priors for covariance matrices and variances have usually been addressed by means of inverted Wishart and
inverted Gamma distributions, respectively, while Wishart or Gamma distributions have been used as priors
for precision matrices and precisions. Wishart priors have been extensively used in the framework of Bayesian
instrumental variable models under normal-distributed errors (see e.g. Kleibergen and Zivot 2003; Lancaster
2008, Chap. 8; Rossi et al. 2005).
32 Ding (2016) used the representation of amultivariate t-student distribution as a scalemixture ofmultivariate
normals to derive the conditional distribution of the multivariate t-student, which can be represented by the
conditional normal distribution times the conditional distribution of the weights.

123



Testing for Convergence in Carbon Dioxide Emissions

comparison with (16), since dm is typically larger than one, what increases the dispersion
of the distribution of individuals’ variances in the (conditional) main equation. That is, the
more extreme the values of the endogenous variable are, themore dispersive is the conditional
distribution of the explained variable in the (conditional) main equation.

AMarkov ChainMonte Carlo (MCMC) algorithm is used to carry out Bayesian inference.
Gibbs sampling can accommodate all priors specified, including the SSVS prior, Eqs. (7) and
(8), the individual-specific weights and the Cholesky-based priors for covariance of the error
terms, Eqs. (14)–(17), and the degrees of freedom parameter, Eqs. (10) and (11).33 The vec-
tor of parameters to estimate is P = (β, π0, π1, {θr }, {δt }, {αi }, αiv, βiv, {β j , γ j }, ν, {ω−1

2,i ,

ω−1
1|2,i }, 	−1

22 , 	−1
1|2, a12). We implement three Markov chains from which, after a burn-in of

7.5 × 105 draws, we retain a posterior sample of 7.5 × 105 draws each.34 We apply a thin-
ning of 3, ending up with a mixed posterior sample of 7.5 × 105 draws. We average across
the posterior sample to calculate the posterior means, standard errors and quantiles of the
coefficients, and the posterior inclusion probabilities (PIP) of the coefficients associated with
specific group convergence. The PIPs of the coefficients for group convergence show the
posterior probability of observing specific dynamics associated with those groups.

The model proposed is a dynamic panel model. Nickell (1981) showed that incidental
parameters yield inconsistent OLS ormaximum likelihood (ML) estimates in dynamic panels
with short time dimension. The phenomenon is a consequence of having a limited number of
observations from which each incidental (individual-specific) parameter is estimated, which
in turn contaminates the estimation of the common parameters and, in particular, of the
dynamic (autoregressive) parameter.35 The literature has proposed alternative estimatorswith
the aim to correct Nickell (1981) bias such as IV estimators, generalized method of moments
(GMM) estimators, analytical corrections for the least squares dummy variable (LSDV)
estimator, and bias-corrected estimators based on iterative bootstrapping (see Everaert and
Pozzi 2007, for a review of these estimators). Maddala and Hu (1996) and Hsiao et al. (1999)
showed that the Bayesian approach performs fairly well in the context of dynamic panels
when T is small, in comparison with some classical estimators.

Our posterior inference is based on the mean of the mixed posterior sample resulting from
the Gibbs sampler after thinning. In addition, it is based on informative priors. Therefore,
we expect that our posterior estimates do not suffer from considerable bias.36 A simulation
exercise under homoscedasticity and heteroscedasticity confirmed that the Bayesian esti-
mator resulted in substantial bias reduction. The performance of the Bayesian estimator was
comparable to, and sometimes outperformed, the performance of difference-GMM (Arellano
and Bond 1991), system-GMM (Blundell and Bond 1998), an extension of Kiviet’s (1995)
bias-corrected estimator (see Bruno 2005), and De Vos et al.’s (2015) bootstrap-based bias
correction.37

33 See George and McCulloch (1993) for details on the Gibbs sampler for the SSVS prior, and Lopes and
Polson (2014) for the details of the Gibbs sampling for IV-estimation in the context of the normal distribution.
34 That was sufficient for the chains to showmixing and the estimates of the coefficients to show convergence
to their ergodic distribution.
35 The concept of incidental parameters and the problem of limited information to estimate incidental param-
eters was first defined by Neyman and Scott (1948). Lancaster (2000) and Moon et al. (2015) offer rigurous
treatments of the incidental parameters problem.
36 Several authors have shown the connection between the non-parametric bootstrap, the parametric
(Bayesian) bootstrap and MCMC, respectively (see e.g. Rubin 1981; Efron 1982, 2011; Newton and Raftery
1994; Hastie et al. 2009, Chap. 8).
37 The results from our simulations are available from the authors upon request. These simulations did not
include the null of endogeneity between explained and explanatory variables and thus do not introduce an IV
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Finally, as a robustness check, we also estimate an alternative (homoscedastic) model
where the priors in Eqs. (3), (12), and (13) are replaced, respectively, by

(
ε1,i t , ε2,i t

) ∼ N (0, 	) (18)

ε1|2,i t ∼ N
(
a12ε2,i t , 	1|2

)
(19)

ε2,i t ∼ N (0, 	22) (20)

where again a12 = 	12/	22 and Eqs. (9), (16) and (17), for the priors of the individual-
specificweights in the variance parameter, andEqs. (10) and (11) for the prior of the degrees of
freedom ν are eliminated. Therefore, the model collapses to the Bayesian IV-model proposed
byLopes and Polson (2014). TheGibbs sampling algorithm for estimating thismodel’s poste-

rior is simplified by deleting the steps corresponding to the parameters
{
ω−1
2,i , ω

−1
1|2,i

}

i=1,...,N
and ν.

5 Results

We implement two types of IV models with errors distributed as a scale mixture of normals
that differ in the inclusion or exclusion of individual-specific dummy variables (DV). The
DV-conditional heteroscedastic model includes a set of economic, political and structural
controls, and individual-specific dummy variables. It constitutes a test for (fully) conditional
convergence. The conditional heteroscedastic model does not include individual-specific
effects and is only conditioned on economic, political and structural variables. This model
provides evidence on a stronger assumption about convergence than the DV-conditional
heteroscedastic model, as it reflects the concept of global convergence.

Table 1 summarizes the results of the DV-conditional heteroscedastic model. The results
of the conditional heteroscedastic model (without individual-dummies) are available in
Table 2.38 The four columns of the tables report the posterior means of the parameter esti-
mates from the outcome (upper panel) and the instrumental equations (middle panel) together
with the R2, the Deviance Information Criterion (DIC), the PIPs of the regressors associated
with specific-group convergence, the half-life derived from the convergence estimates, the
posterior the hyperparameter governing theweights associatedwith the country-specific vari-
ances ν, and the number of observations of the regressions for the four CO2 inventories (CO2

per capita and per value added for production and consumption inventories; lower panel).39

The asterisks next to the parameter estimates indicate whether the parameter is different from
zero at the 99%, 95% or 90% (equal-tailed) credible intervals (CI).

The estimated ν turn out to be very low (between 4 and 5), pointing to the existence of
heteroscedasticity for each of the four inventories, for the specifications with and without
individual fixed effects (Tables 1 and 2, respectively). The R2 are relatively high throughout,
indicating that the included regressors explain a large part of the variation in the growth

Footnote 37 continued
structure in the model. A more detailed simulation-based analysis of the Bayesian estimator in comparison
with alternative dynamic panel estimators can be found in Fernández-Amador and Oberdabernig (2018).
38 Furthermore, we report the results of the DV-conditional and conditional homoscedastic models (normal-
distributed errors with and without individual-dummies) in Tables A.4 and A.5 in the Online Appendix.
39 The underlying data cover 468 observations. Because we use the growth rate of emissions as dependent
variable, our final sample includes 390 observations.
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rates of all four emission inventories.40 In particular, the DV-conditional model explains 73–
74% of the variation in growth of CO2 emissions per capita and per value added embodied
in production activities, while it accounts for 61–65% of the variation in the growth rate of
emissions per capita and per value added embodied in consumption. The explanatory power of
the conditional model decreases to 26–28% for production inventories, and respectively 31%
and 47% for CO2 consumption intensities and CO2 consumption per capita. The difference
between the R2 of the specifications underlines the importance of country-specific steady
states. Additionally, the inspection of the DIC across specifications lends support to bothDV-
conditional and conditional models as a representation of the dynamics of carbon emissions
per capita and per value added.

In all specifications we instrument the growth rate of income per capita in order to account
for potential reverse causality (see Barro and Sala-i-Martin 1992). The coefficient of lagged
income per capita growth, which we use as an instrument, is positive with a CI of 99% in each
specification, indicating a high relevance of this variable. At the same time it is exogenous,
as emission growth cannot affect lagged growth rates of income per capita. The estimate for
aiv , the strength of the correlation between the errors of the instrumental and the outcome
equations is insignificant at the 90% CI for all emission inventories but for carbon emissions
per capita from consumption in the DV-conditional model.

5.1 DV-Conditional Convergence

For theDV-conditional convergence model in Table 1, the posterior mean of the parameter
connected to lagged emissions (the convergence parameter, β) reveals a negative effect of
lagged emissions on the average growth rate of all four emission inventories, at a CI of 99%.
This provides strong evidence for convergence in all four CO2 emission inventories. The
magnitudes of the posterior mean of the convergence parameter are larger in absolute value
for production inventories than for consumption inventories.

Given the size of the convergence parameters, it is possible to calculate the time needed for
countries to halve their emission gap towards their country-specific steady states. Assuming
that the average emission trajectories observed in the sample remain unchanged, the half-life
of emissions amounts to 3.1 (3.6) years for CO2 per capita production (consumption) and
2.7 (4.7) years for CO2 production (consumption) per unit of value added.41 These rather
fast convergence rates implied by our estimates are in line with the findings of Westerlund
and Basher (2008) and Jobert et al. (2010) for CO2 per capita from production activities.
Westerlund and Basher (2008) reported a half-life of CO2 emissions per capita between 3.1
and 6.1 years in a sample of developed and developing countries.42 Jobert et al. (2010) found
the half-life of CO2 emissions to be between 2.2 and 3.4 years for various OECD countries.43

40 It should be noted that Bayesian estimation does not aim at minimizing the sum of square residuals and
thus, it does not maximize the R2. However, we consider it together with the DIC when assessing how well
our models fit the data and whether they can be regarded as consistent with our data. The DIC penalizes the
number of parameters and is often regarded as a better measure of fit in the Bayesian context than the R2.
41 The half-life provides an indication of the speed of convergence. It is defined as the time required to
eliminate half of the initial gap between actual emissions levels and the steady state. The half-life is calculated
as −ln(0.5)

−ln(1+β)
(see Allington and McCombie 2007, p. 206).

42 The half-life in their sample of developed countries was estimated to lie between 4.2 and 6.2 years; this is
longer than the half-life estimated in their pooled sample including developing countries.
43 These figures correspond to estimates of conditional convergence. For unconditional convergence the
authors reported a half-life between 4 and 8.5 years.
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Table 1 Results scale-mixture of normals, DV-conditional heteroscedastic model

(1) (2) (3) (4)
CO2 pc prod. CO2 pc cons. CO2 va prod. CO2 va cons.

Outcome equation

Constant −0.4089*** −0.4012*** 0.2011 0.1240

Ln(emissions) −0.2009*** −0.1741*** −0.2269*** −0.1372***

Ln(emissions)·EU −0.0001 −0.0001 −0.0005 −0.0002

Ln(emissions)·OECD −0.0004 −0.0004 0.0066 0.0004

Ln(emissions)·Annex B 0.0000 0.0000 −0.0008 −0.0124

Ln(Income pc) 0.0932*** 0.0769*** −0.0187 −0.0020

Income pc growth 0.8159*** 1.5034*** −0.4024 −0.1206

Ln(pop. density) −0.0750*** −0.0423 −0.0189 −0.0261

Fossil rents 0.0029** 0.0019 0.0025* 0.0015

Nuclear (%) 0.0007* 0.0008* 0.0005 0.0001

Fossil fuels (%) 0.0007** 0.0007** 0.0007* 0.0002

Openness −0.0001 0.0000 0.0000 0.0000

Political regime −0.0017** −0.0009 −0.0020** −0.0015*

VA energy (%) 0.0003 0.0004 −0.0004 −0.0005

VA light manufacturing (%) 0.0008 0.0002 0.0006 0.0007

VA heavy manufacturing (%) −0.0004 0.0002 −0.0018* −0.0020*

VA textiles (%) 0.0026 −0.0005 0.0070*** 0.0016

VA water services (%) 0.0146* 0.0083 0.0075 0.0038

VA construction (%) −0.0020* 0.0007 −0.0039*** −0.0002

VA trade and transport (%) 0.0004 0.0001 0.0001 −0.0004

VA other services (%) 0.0006 −0.0007 0.0002 0.0004

2004 0.0244*** 0.0291*** −0.0058 −0.0135**

2007 0.0064 0.0171*** −0.0244*** −0.0338***

2011 0.0119* 0.0199*** −0.0248*** −0.0383***

2014 −0.0002 0.0102 −0.0485*** −0.0554***

Individual-dummies Yes Yes Yes Yes

R2 0.7272 0.6513 0.7398 0.6055

DIC −3283.5 −3212.1 −3165.0 −3141.1

Instrumental equation for income pc growth

Constant 0.0147*** 0.0147*** 0.0147*** 0.0147***

Income pc growth, lagged 0.3597*** 0.3618*** 0.3596*** 0.3597***

aiv −0.1678 −0.5926** 0.1366 −0.1570

R2 0.5328 0.5334 0.5328 0.5322

PIP EU 0.0100 0.0225 0.0192 0.0223

PIP OECD 0.0062 0.0185 0.1885 0.0192

PIP Annex B 0.0229 0.0032 0.0309 0.5115

Half-life 3.0907 3.6237 2.6934 4.6970

ν 4.6581 4.8148 4.6797 4.4001

N 390 390 390 390

*CI 90%, **CI 95%, ***CI 99%. All variables but group dummies and income pc growth enter in lagged val-
ues. The half-life is calculated as −ln(0.5)/−ln(1 + β) (see Allington and McCombie 2007). The Bayesian
R2 is the mean of the R2 computed for each draw q of the Markov chain (MC), R2

q where R2
q =∑

i,t ŷi t/
(∑

i,t ŷi t + ∑
i,t εi t

)
, where ŷi t is the estimate of yit implied by the model and εi t = yit − ŷi t (see

Gelman et al. 2017). The Deviance Information Criterion (DIC) is computed as DIC = D̂q +Var(Dq )/2, where
Dq is the deviance measure associated with draw q in the MC (see Spiegelhalter et al. 2002; Gelman et al. 2004,
Chap. 7)
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Thus, our results confirm that the findings of earlier studies covering a smaller number of
countries also hold for a sample of countries comprising the whole world.

There is no strong evidence for the existence of specific convergence dynamics for the
EU, OECD or Annex B members. The PIPs of the group-specific regressors are usually
smaller than 10%, with the exception of the group of OECD countries in the model for
CO2 production per value added and the group of Annex B countries in the model for CO2

consumption per value added, with PIPs of 19% and 51%, respectively. A low PIP implies
that the estimation algorithm tends to exclude group-specific dynamics. Consequently, the
slope estimates of the group-specific regressors are very low in magnitude and not different
from zero at any of the CIs considered. Also the group-specific convergence terms with a
higher PIP fail to be different from zero at any of the specified CIs.

Some of the control variables capturing economic and institutional characteristics have
significant effects on emission growth. Higher per capita income and a higher growth rate of
per capita income are associatedwith higher growth rates of CO2 per capita, while CO2 inten-
sities are not significantly affected by these variables. This highlights the role of energy—and
thus energy-derived CO2 emissions—as a necessary input for production and consumption
patterns. Population density has a negative effect on the growth rate of CO2 per capita from
production inventories. The opposite is true for the share of rents from fossil fuel production
in GDP, which has a positive effect on the growth rate of both CO2 production invento-
ries. With respect to the variables related to the composition of electricity production in an
economy, a higher share of fossil fuels or nuclear sources in total electricity production is
connected to a larger growth rate of CO2 emissions per capita, and in the case of fossil fuels
also to a higher growth rate of CO2 production intensity. Noteworthy, trade openness does
not affect emission growth for any of the inventories considered. More democratic regimes
are connected to lower growth rates of CO2 for all inventories but CO2 consumption per
capita, suggesting that democracy may be a channel through which citizens’ preferences are
revealed (see Farzin and Bond 2006).44

Regarding the sectoral shares in value added, only four sectors are relevant at a CI of at
least 90%. These are heavy manufacturing, which tends to reduce the growth rate of CO2

intensity, textiles, which increases the growth of CO2 production intensity, water services,
which are connected to higher emission growth rates for CO2 per capita from production,
and the construction sector, which lowers the growth rate of both production-based emission
inventories.45 The time-dummies are different from zero at the selected CI in most cases. For
carbon emissions per capita, they point towards a significant increase in emissions growth in
2001–2004 worldwide, followed by a slight decrease afterwards. For CO2 per value added,
by contrast, the results indicate a global decrease in emission intensities over time.

5.2 Conditional ConvergenceWithout Individual-Dummies

The DV-conditional model analyzed above includes individual-specific effects and is thus
concernedwith convergence towards individual-specific steady states. A stronger assumption

44 The negative effect of democracy on emissions growth is not robust to using alternative measures of
democracy, such as the democracy measure sourced from the FSD1289 Measures of Democracy 1810–2014
database (see Finnish Social Science Data Archive 2018) or the average of the Freedom House indices of
political rights and civil liberties (see Freedom House 2018). The main results are not sensitive to these
alternative specifications and are also robust to the exclusion of the democracy variable.
45 The negative impact of the construction sector may be related to the low carbon intensity of this sector
during the period analyzed. We take the value added share of agriculture as the benchmark sector and exclude
it from the specifications in order to avoid multicollinearity.
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Table 2 Results scale-mixture of normals, conditional heteroscedastic model

(1) (2) (3) (4)
CO2 pc prod. CO2 pc cons. CO2 va prod. CO2 va cons.

Outcome equation

Constant −0.3611*** −0.4721*** −0.0938** −0.0112

Ln(emissions) −0.0266*** −0.0460*** −0.0154*** −0.0158***

Ln(emissions)·EU 0.0001 0.0000 0.0003 0.0002

Ln(emissions)·OECD 0.0002 0.0002 −0.0002 −0.0002

Ln(emissions)·Annex B −0.0002 −0.0003 0.0006 0.0002

Ln(income pc) 0.0336*** 0.0525*** 0.0105** 0.0011

Income pc growth 0.7263*** 1.0017*** −0.1722 0.0095

Ln(pop. density) −0.0033* −0.0047*** −0.0034 −0.0040**

Fossil rents −0.0006 −0.0009 0.0002 0.0005

Nuclear (%) −0.0001 0.0001 0.0001 0.0001

Fossil fuels (%) 0.0002* 0.0002* 0.0001 0.0001

Openness 0.0000 0.0000 −0.0001 0.0000

Political regime −0.0011** −0.0008 −0.0008 −0.0004

VA energy (%) 0.0013* 0.0014** 0.0001 −0.0002

VA light manufacturing (%) 0.0004 −0.0005 0.0001 −0.0001

VA heavy manufacturing (%) 0.0005 0.0003 −0.0003 −0.0001

VA textiles (%) 0.0042*** 0.0024** 0.0052*** 0.0027**

VA water services (%) −0.0020 −0.0046 0.0062 −0.0051

VA construction (%) −0.0004 −0.0008 −0.0015 0.0002

VA trade and transport (%) 0.0008 0.0006 −0.0001 0.0001

VA other services (%) 0.0008 0.0004 −0.0003 −0.0001

2004 0.0335*** 0.0305*** 0.0140* 0.0037

2007 0.0063 0.0035 0.0042 −0.0079

2011 0.0115* 0.0083 0.0117 −0.0039

2014 −0.0017 −0.0089 −0.0013 −0.0148**

Individual-dummies no no no no

R2 0.2757 0.4659 0.2554 0.3117

DIC −3230.3 −3259.2 −3018.1 −3223.5

Instrumental equation for income pc growth

Constant 0.0145*** 0.0147*** 0.0146*** 0.0147***

Income pc growth, lagged 0.3620*** 0.3594*** 0.3603*** 0.3589***

aiv −0.0714 0.0114 −0.2114 −0.3918

R2 0.5314 0.5324 0.5319 0.5326

PIP EU 0.0029 0.0020 0.0075 0.0055

PIP OECD 0.0038 0.0095 0.0083 0.0061

PIP Annex B 0.0023 0.0056 0.0322 0.0050

Half-life 25.7100 14.7191 44.6621 43.5226

ν 3.8105 4.5663 4.2396 4.6691

N 390 390 390 390

*CI 90%, **CI 95%, ***CI 99%. All variables but group dummies and income pc growth enter in lagged val-
ues. The half-life is calculated as −ln(0.5)/−ln(1 + β) (see Allington and McCombie 2007). The Bayesian
R2 is the mean of the R2 computed for each draw q of the Markov chain (MC), R2

q where R2
q =∑

i,t ŷi t/
(∑

i,t ŷi t + ∑
i,t εi t

)
, where ŷi t is the estimate of yit implied by the model and εi t = yit − ŷi t (Gelman

et al. 2017, see). The Deviance Information Criterion (DIC) is computed as DIC = D̂q +Var(Dq )/2, where Dq
is the deviance measure associated with draw q in the MC (see Spiegelhalter et al. 2002; Gelman et al. 2004,
Chap. 7)
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is that convergence occurs towards a common steady state that is determined by economic
and political factors. In order to test for international convergence towards a common level of
emissions per capita or per value added, we also estimate models without individual-specific
effects. The results from the conditional models without individual-dummies, displayed in
Table 2, show a slightly different pattern of convergence. The convergence parameters (of
lagged emissions) are still relevant at the 99% CI for all inventories, but are substantially
smaller in absolute values than in the DV-conditional models; they indicate a half-life of 26
(15) years for CO2 per capita production (consumption) and of 45 (44) years for CO2 pro-
duction (consumption) intensities. Group-specific convergence patterns remain unimportant,
with PIPs that are even lower than for the DV-conditional models (in most cases below 1%).

With regard to the control variables, some turn irrelevant for explaining emissions
growth—fossil rents, the share of nuclear sources in electricity production, and value added
shares of heavy manufacturing, water services and construction for all inventories, as well
as political regime and the share of fossil fuels in electricity production for CO2 intensities.
Some others gain relevance, namely population density for consumption inventories, the
value added share of the energy sector for per capita emissions, and the value added share of
the textile sector for all inventories. Furthermore, income per capita is now relevant for all
inventories but CO2 consumption intensity.46

To sum up, our findings provide strong evidence for rather fast rates of convergence
towards country-specific steady states for all four CO2 inventories (DV-conditional model).
International convergence towards global steady states determined by political and economic
structures proceeds at a much slower pace (conditional model). Although some previous
studies have found evidence for group-specific convergence patterns for OECD and EU
members (e.g. Aldy 2006; Nguyen 2005; Ordás Criado and Grether 2011; Panopoulou and
Pantelidis 2009; Westerlund and Basher 2008), none of our models provides evidence for
differences in convergence dynamics implied by membership in the OECD, EU, or Annex
B to the Kyoto Protocol. Therefore, climate change policies of industrialized countries such
as the OECD or the EU have not been effective in accelerating emission convergence among
developed economies (see also Westerlund and Basher 2008, who found slower convergence
for OECD countries). Furthermore, the binding commitments of the Kyoto Protocol have
been largely ineffective in accelerating emission convergence among Annex B countries (see
also Ordás Criado and Grether 2011).47

6 Conclusion and Discussion

We tested for international convergence of CO2 per capita and per value added derived from
production and consumption patterns across a global sample of countries during 1997–2014.
In so doing, we put forward a Bayesian test for convergence that is robust to cross-sectional
heteroscedasticity, accounts for endogeneity between the growth rate of CO2 emissions and
economicgrowth, and allows for the existenceof group-specific convergence amongmembers
of the EU, the OECD, and the Annex B to the Kyoto Protocol.

46 The results of the models without individual-dummies could be affected by omitted variables and should
be taken with care (see Barro and Sala-i-Martin 2004).
47 Tables A.4 and A.5 in the Online Appendix report the results for the models with homoscedastic errors.
The main results do not change qualitatively. The only important qualitative change is that income growth
becomes significant for emissions per value added in the DV-conditional models. The convergence coefficient
only changes slightly, though this change is amplified in the half-lives, decreasing them in the specifications
for emissions per value added in the conditional models.
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Our findings suggest that all four emission inventories converge towards country-specific
steady states. The short half-lives calculated show that emissions per capita aswell as emission
intensities are close to their country-specific steady states. Production-based inventories show
a shorter half-life (2.7–3.1years) than consumption-based inventories (3.6–4.7years). The
finding that for production inventories CO2 intensity converges faster than CO2 per capita is
in line with the results of Anjum et al. (2014). For CO2 consumption inventories the reverse
is true, what provides a first indication that, internationally, CO2 intensities converge more
slowly than CO2 per capita.

In fact, a much slower pace of global CO2 convergence across countries—towards global
steady states that are determined by economic and political structures—is detected for all
four emission inventories. Emissions per capita embodied in consumption show substantially
faster global conditional convergence (with a half-life of 14.7 years) than emissions per capita
embodied in production (25.7 years). This is consistent with converging consumption bundles
across countries as a result of increasing globalization and the homogenization of consumer
tastes, while the slower cross-country convergence of production-based emissions can be
related to the long-run nature of structural transformations of production patterns. Emission
intensities converge towards global steady states at an even slower pace, which is similar
for production and consumption inventories (implying half-lives of 44–45 years). The very
slow pace of global convergence of emission intensities indicates that technology transfers
across countries have been rather limited and cannot explain the faster rate of convergence
of emissions per capita. Thus, the faster convergence of emissions per capita is likely to be
driven by some of the conditioning variables, possibly income growth. Various empirical
studies have shown that income and CO2 emissions are positively related (e.g. Azomahou
et al. 2006; Holtz-Eakin and Selden 1995; Fernández-Amador et al. 2017). To the extent
that the economic crisis of 2008 has led to a decline in economic growth in high-income
countries, whereas countries with lower income levels were able to catch up, this catch-up
process could have sped up the international convergence of per capita emissions (see also
Brock and Taylor 2010).48

Actual levels of carbon emissions have proven to be unsustainable. Our results indicate
that higher income growth is related to a higher growth rate of emissions per capita, while it
is not connected to a decrease in emission intensities. The evidence for convergence does not
automatically imply convergence towards steady states that are sustainable, as highlighted
by Brock and Taylor (2010) and Ordás Criado et al. (2011). Moreover, the evidence for
fast country-specific convergence towards not sustainable steady states underlines the cur-
rent incompatibility between economic growth and the 2°C target, and the need for further
abatement and mitigation policies to keep global warming under control while maintaining
reasonable economic growth rates.

The historical responsibility for atmospheric CO2 concentrations corresponds to devel-
oped economies. However, those economies, represented in our sample by three groups—
OECD, EU, and the countries that ratified the Annex B to the Kyoto Protocol—have not
experienced faster group convergence. This lack of specific patterns of convergence among
developed economies, despite the environmental policies implemented in these countries
during the period of analysis after the Kyoto Protocol, shows the difficulties in achieving
effective agreements and policies to take action against global warming.

The slow pace of international convergence of emissions and the limited extent of interna-
tional technology diffusion pose doubts on the feasibility of the agreed sustainability targets,
unless a significant change in the international institutional framework takes place, and new,

48 A more detailed analysis of this mechanism is out of the scope of this paper.
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stronger abatement policies are implemented. Also, much faster transfers of green technolo-
gies will be necessary.

The lack of a stabilization of emissions in industrialized economies at sustainable emission
levels may discourage developing economies to accept a cap on emissions. In addition, the
evidence found for country-specific steady states in emissions points to significant transac-
tion costs connected to the design of multilateral policy frameworks aimed at global emission
reduction. Even though there is an urgency formultilateral approaches to fight climate change
that encompass developed and developing countries, developed economies should foster fur-
ther national environmental policies to promote carbon efficiency and less polluting sources
of energy in order to reinforce the international action against global warming.
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