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Abstract

We propose a methodology to recover the general equilibrium impact of an economic shock by

aggregating its impact across regions. Theoretically, it is sufficient to measure: (i) each region’s

‘‘shift-share’’ exposure capturing shocks to its excess labor demand, and (ii) the reduced-form ef-

fect that this exposure has directly on that region, and indirectly on other regions through spatial

links. Empirically, we combine our theoretical reduced-form representation with exogenous ob-

served shocks to estimate parameters regulating direct and indirect spatial effects, and formally

test the effects predicted by spatial quantitative models. Finally, we apply our methodology to

study the impact of the ‘‘China shock’’ on U.S. Commuting Zones. We uncover a striking discon-

nect: common assumptions in existing quantitative spatial frameworks yield direct and indirect

effects that are too small compared to their empirical counterparts and, thus, are rejected by our

test. In contrast, we estimate larger direct effects and reinforcing indirect effects, which imply

larger employment losses from the China shock, both on average and differentially across regions.
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1 Introduction

Aggregate shocks do not affect all regions of a country in the same way. A recent wave of empirical

work in international, macro, and urban economics has exploited variation in regional exposure to

aggregate shocks to evaluate their differential impact on regional outcomes – for reviews, see Moretti

(2011), Autor et al. (2016), Muendler (2017), Nakamura and Steinsson (2018), Chodorow-Reich

(2020). Such an empirical strategy has become a popular tool to uncover causal evidence about the

patterns of labor market adjustment to aggregate shocks. However, it suffers from the so-called

‘‘missing intercept’’ problem: it is not guaranteed to recover the aggregate general equilibrium impact

of the shock when regions are spatially connected – for example, when there are demand spillovers or

upstream and downstream relationships across regions.1 How can we solve the aggregation problem

of recovering the general equilibrium impact of economic shocks from their differential effects across

regions? Moreover, how can we design an empirical strategy to measure the impact of such shocks

that exploits exogenous variation in regional shock exposure?

We propose a new theoretical solution to the aggregation problem by expressing the changes

in regional outcomes implied by spatial models in their reduced-form representation: in terms of

shifts in the demand and supply of labor in each region (i.e., regional shock exposure), and the

effects that each region’s exposure creates directly on its outcomes and indirectly on other regions

through spatial links (i.e., direct and indirect reduced-form elasticities, respectively). We show

that these reduced-form elasticities are sufficient statistics for aggregating the exposure of different

regions in order to compute the shock’s general equilibrium impact. We further characterize how

the reduced-form elasticities depend on features of the spatial network of trade and labor outcomes,

as well as the parameters governing adjustment channels in the economy.

To measure the (differential and aggregate) impact of an exogenous trade shock on regional

outcomes, we propose a new empirical strategy based on our theoretical reduced-form representation.

Our specification is a generalization of the type of shift-share empirical strategy in Topalova (2010),

Kovak (2013), and Autor et al. (2013). It leverages the response of regional outcomes to the shock

exposure of different regions to identify the parameters controlling not only direct effects but also

spatial indirect effects. In line with our theoretical result, measuring these effects is sufficient to

aggregate the exposure of different regions in general equilibrium. Conversely, when all model

parameters are known, our specification yields over-identification moments that provide a formal

test for whether the model’s predicted effects to observed exogenous shocks are consistent with their

empirical counterparts – akin to the type of slope test proposed by Kovak (2013). Thus, we provide

a solution for the lack of a methodology to evaluate the fit of quantitative trade and spatial models

(Kehoe, 2005; Kehoe et al., 2017; Antràs and Chor, 2021).

1This is related to the problem that difference-in-difference empirical strategies do not recover the general
equilibrium effect of the ‘‘treated’’ on ‘‘non-treated’’ (Heckman et al., 1998). Muendler (2017) and Chodorow-Reich
(2020) discuss this problem for specifications based on cross-regional variation in shock exposure.
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Lastly, to showcase the benefits of our methodology, we study the impact of the China shock

on U.S. Commuting Zones (CZs) using the generalization of the strategy in Autor et al. (2013)

(henceforth, ADH) implied by our model’s reduced-form representation. We uncover a striking

disconnect between the large empirical estimates and the small quantitative predictions of the existing

literature for the shock’s differential impact across regions. Such a disconnect arises because common

assumptions in quantitative spatial frameworks yield (direct and indirect) reduced-form elasticities

that are too small compared to their empirical counterparts and, thus, are rejected by our formal test.

In contrast, our empirical specification yields larger estimates of the reduced-form elasticities that

imply larger employment losses from the China shock, both on average and differentially across CZs.

We start in Section 2 by establishing that spatial links in goods and labor markets did not offset

the negative differential effect on U.S. CZs created by higher exposure to Chinese import competition

that ADH has documented. In fact, the combination of such links amplified the shock’s differential

impact. Specifically, using exactly the same data and sample as in ADH, we extend their specification

to document three facts about how different mechanisms shaped regional responses to the China

shock. First, spatial links propagated negative shocks in labor demand across regions: employment

and wage growth were weaker in CZs geographically close to a CZ facing higher import competition.

Second, stronger import growth in (final and intermediate) goods consumed in a CZ did not generate

relative gains in employment and wages. Third, we do not find evidence that population responded

to any measure of regional shock exposure. We attest that these findings are robust to alternative

specifications, such as inference procedures, weighting schemes, control sets, exposure measures, and

sectoral shifters. We further establish that both our estimates and those in ADH yield a differential

impact of the China shock that is much larger than that predicted by existing quantitative models

with rich spatial links – e.g., Caliendo et al. (2019) and Galle et al. (2021).

Motivated by these empirical findings, Section 3 proposes a methodology to measure the aggregate

impact of a shock from its differential effect across markets, and to investigate the roots of the

disconnect discussed above. We do so in a tractable multi-region, multi-sector gravity trade model

that features local agglomeration forces in production, as well as spatially immobile individuals who

choose whether to work or not. We show that, up to a first-order approximation, log-changes in

labor outcomes of regional market i, Ŷi, following shocks in the fundamentals of the global economy

τ̂ (e.g., trade costs and productivity) combine direct effects and spatial indirect effects:

Ŷi=βii(θ)η̂i(τ̂ )︸ ︷︷ ︸
Direct effect

+
∑
j 6=i

βij(θ)η̂j(τ̂ )︸ ︷︷ ︸
Indirect spatial effect

, (1)

where η̂i(τ̂ ) is the shock-induced shift in each market’s excess labor demand, and βij(θ) is the

reduced-form elasticity of market i’s outcome to the shift in excess labor demand of market j. In our

model, η̂i(τ̂ ) captures the market’s ‘‘revenue shock exposure’’, i.e. how much its revenue responds
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to the shock (holding constant wages and employment). It takes a shift-share form, as it sums the

shocks in τ̂ interacted with pre-shock regional exposure shares, which depend on sectoral employment

and trade outcomes. The reduced-form elasticities βij(θ) capture how much the shock exposure of a

market directly affects its own outcomes, and indirectly percolates to other markets. They depend

on both the economy’s pre-shock spatial links, and the parameters in θ determining the elasticities of

the regional supply and demand for labor.

This structural relationship forms the basis of how we recover the aggregate impact of shocks

from their differential effects across regions. For any τ̂ , we measure the shock exposure of each

market using outcomes observed prior to the shock. We then leverage the fact that the reduced-form

elasticities are sufficient statistics for measuring the shock’s general equilibrium impact on the

economy: we aggregate the exposure of different markets using estimates of the direct and indirect

reduced-form elasticities that determine the shock’s differential effects across regions.2

Based on this theoretical result, we can rationalize the facts discussed above, given that the

shift-share exposure measure in ADH resembles a negative shock to revenue in our model. First,

indirect reduced-form elasticities are increasing in bilateral trade links and are positive when such

links are strong enough. Thus, a negative revenue shock exposure in one market endogenously

reduces labor demand in nearby regions for which trade links are stronger. Second, while a higher

pre-shock spending on imported goods that became cheaper directly affects the cost of living, it does

not have any impact on employment and wages when import prices do not affect non-employment

payoffs and production costs. Finally, reduced-form elasticities are increasing in both the strength of

agglomeration and labor supply responses. Thus, the weak combination of these forces in Ricardian

quantitative spatial models helps to explain the disconnect highlighted above.

We then show how to use our reduced-form representation to estimate the general equilibrium

impact of observed exogenous shocks. In our model, observed changes in regional outcomes are the

sum of the predicted response to the observed shock, given by (1), plus a constant and a residual solely

determined by other unobserved shocks. Therefore, if the observed shock is exogenous (i.e., orthogonal

to all other unobserved shocks), this structural relationship yields a specification for the estimation

of θ and, thus, βij(θ). Identification comes from estimated differential effects: how much regional

outcomes directly and indirectly respond to higher exposure in different markets. Our empirical spec-

ification has two advantages. It transparently connects the aggregate impact of the observed shock to

the magnitude and sign of the estimates of the reduced-form elasticities to regional shock exposure. In

addition, it yields the most efficient estimator of θ since it leverages both the direct and the spatial indi-

rect effects of the observed shock in general equilibrium, instead of the partial equilibrium relationships

between endogenous variables instrumented with ‘‘intuitive’’ measures of regional shock exposure.

2We further show how our formulas can be easily integrated to recover the exact impact of the shock. We use
this integration algorithm to extend our empirical methodology to account for non-linearities in the impact of the
shock, and show that the first-order approximation performs well in our empirical application.
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Moreover, once the spatial model is fully specified (i.e., θ is already known), our empirical specifi-

cation yields additional over-identification moments that can be used to formally test whether one can

reject that the model’s predicted responses to observed shocks are consistent with actual responses in

outcomes across markets. The test takes the form of a regression of actual log-changes in outcomes

on their model-predicted analogs in response to the observed shock. Under the null hypothesis that

the model is well-specified and the shock is exogenous, the slope coefficient must be equal to one.

Importantly, we argue that the credibility of the model’s predictions is severely undermined in case of

a rejection, since the differential responses implied by the model’s reduced-form elasticities are either

too small or too large compared to those observed in the data. Lastly, because our test leverages an

exogenous observed shock, it is robust to unobserved shocks driving most of the variation in regional

outcomes – a common critique against performance evaluations based on statistical decomposition,

such as the one proposed by Kehoe et al. (2017) (see discussion in Antràs and Chor (2021)).

In Section 4, we generalize our framework to account for other channels highlighted in recent

quantitative trade and spatial models – for reviews, see Costinot and Rodŕıguez-Clare (2014) and

Redding and Rossi-Hansberg (2017). In particular, we also allow for trade in final and intermediate

goods, as well as labor supply to depend on migration choices and import prices. These additional

mechanisms yield an extension of (1) that we can still combine with exogenous observed shocks for

estimation and testing. The general model entails three new theoretical insights. First, trade in

intermediate goods introduces upstream production relationships into the measure of ‘‘revenue shock

exposure’’ of each market. Second, higher usage of intermediates plays a similar role to stronger

agglomeration forces in amplifying the (direct and indirect) reduced-form elasticities to revenue

shock exposure. Third, the shift in excess labor demand now also incorporates two measures of

‘‘consumption shock exposure:’’ one accounting for the downstream effect of import cost shocks on

sales, and another accounting for the effect of import price shocks on labor supply.

The last part of the paper, Section 5, revisits the problem of estimating the impact of the ‘‘China

shock’’ on U.S. CZs. We rely on Chinese productivity shocks in manufacturing industries that we

recover from Chinese import growth in other high-income countries using the gravity structure of our

model.3 We find that reduced-form elasticities to revenue shock exposure, direct and indirect, are large

as a result of strong agglomeration forces and high sensitivity of employment to wages, and that the two

channels of consumption exposure create relatively weak employment responses to import price shocks.

We then implement our formal test for different specifications of spatial links. Our estimated speci-

fication yields predictions that are consistent with the observed differential responses in both outcomes

3Our implementation differs from that in Caliendo et al. (2019) and Galle et al. (2021) which requires the
productivity shocks in the calibrated model to match the coefficient of a cross-sector regression of Chinese import
growth to other developed countries on its analog in the U.S. By construction, such a strategy assumes that China’s
productivity shocks are the sole driver of this correlation and, thus, attributes to them the effect of any other shock
that affects trade flows in all markets. Our approach instead uses a gravity equation to decompose Chinese import
growth into components associated with China’s productivity shock and demand changes caused by other shocks.
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used in estimation (i.e., wage and employment rates across CZs), as well as other outcomes not targeted

in estimation (i.e., manufacturing employment share across CZs, and U.S. exports and imports across

sectors). In addition, we test the predictions of the model under a benchmark calibration based on ex-

isting quantitative spatial frameworks recently used to study the China shock.4 This benchmark yields

small differential predicted effects across CZs and, as a consequence, is rejected by our test. We identify

the reason behind the benchmark’s disconnect from observed responses to be its lack of agglomeration

forces, weak employment sensitivity to wages, and strong employment sensitivity to import prices.

We conclude by using our estimated specification to measure the general equilibrium impact of

the China shock on U.S. CZs. We find a large variation in employment responses across CZs. On

aggregate for the entire U.S., the China shock eliminated around 3 million jobs between 1990 and 2007.

Due to our larger estimates of the (direct and indirect) reduced-form elasticities to revenue exposure,

we obtain differential and aggregate losses in employment that are an order of magnitude larger than

those in Caliendo et al. (2019). When we account for the compensating impact of the shock on the

cost of living, we obtain only a small change in the median real wage in the U.S., comparable to that

in Caliendo et al. (2019) and Galle et al. (2021). However, in contrast to these papers, we estimate

a much larger spatial dispersion in real wage responses, with declines for a large fraction of the CZs.

Our theoretical solution to the aggregation problem is a significant departure from the common

approach of computing aggregate effects using models with rich calibrated spatial links (as in the liter-

ature summarized in Redding and Rossi-Hansberg (2017)). The key difference is that we express the

model’s predictions in terms of heterogeneous direct and indirect reduced-form elasticities and observ-

able measures of shock exposure. We further leverage this reduced-form representation for estimation

and testing by linking the theoretical differential effects to their empirical counterparts. Note that the

heterogeneity in spatial indirect effects sets our analysis apart from recent macroeconomic frameworks

with regional responses featuring a ‘‘missing intercept’’ computed with calibrated spatial models –

e.g. Nakamura and Steinsson (2014); Mian and Sufi (2014); Beraja et al. (2019). As Chodorow-Reich

(2020) points out, under such an approach, the measurement of the shock’s aggregate impact heavily

depends on restrictive modeling assumptions that allow the identification of the shock’s differential im-

pact to rely on the Stable Unit Treatment Value Assumption (SUTVA). This assumption a priori rules

out the type of heterogeneity in spatial indirect effects that we document in our empirical analysis.5

Our reduced-form characterization exploits an intuitive excess labor demand representation of

spatial models, similar to that in Allen et al. (2020b) and Bartelme (2018). We extend that approach

to a more general economy with multiple sectors, intermediate inputs in production, endogenous

4We show that under this benchmark calibration, our model’s predicted responses in the employment rate of
U.S. states are similar to those reported in Caliendo et al. (2019).

5In fact, we show that a common ‘‘missing intercept’’ can arise only with restrictive symmetry assumptions on
spatial links. SUTVA also rules out heterogeneity in the direct ‘‘treatment’’ effect of regional shocks, which also
arises from spatial links as shown by Monte et al. (2018). Two recent papers also document heterogeneous spatial
indirect effects of regional shocks: Burchardi et al. (2020) for the impact of immigration shocks on innovation, and
Hornbeck and Moretti (2018) for the impact of productivity gains on domestic migration.
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employment choice, and an arbitrary structure of trade costs.6 We show that a wide class of models

has a reduced-form representation that takes the form of a generalization of typical shift-share

empirical specifications in the literature, and uncover the determinants of the sign and magnitude

of the model-implied reduced-form elasticities. This structural relationship is the basis of how we

recover the aggregate impact of trade shocks from their estimated differential effects across regions.

Our empirical specification generalizes shift-share strategies such as those in the seminal con-

tributions of Bartik (1991) and Blanchard and Katz (1992), and those used more recently in the

international trade literature – see e.g. Topalova (2010), Autor et al. (2013), Kovak (2013), Pierce

and Schott (2020). By accounting for heterogeneous indirect effects across regions, it can be used for

estimating regional responses to economic shocks through the model’s general equilibrium mechanisms.

Our empirical specification also complements structural estimation strategies based on equilibrium

relationships between endogenous outcomes in spatial models.7 It provides additional moments for

both estimating the model-implied reduced-form elasticities and evaluating the fit of the model’s

predictions determined by them. Our formal test is closest to that in Kovak (2013) as we regress

changes in regional outcomes on their corresponding predicted responses in the model following an

observed exogenous trade shock (see also Davis and Weinstein (2001) and Costinot and Donaldson

(2012)). While Kovak (2013) only considers a small open economy without spatial indirect effects,

we provide formal conditions for testing a wide class of spatial models.

2 Adjustment of U.S. Regional Markets to Trade Shocks:

Three Stylized Facts

We begin by extending the specification in ADH to establish three stylized facts. They indicate that

spatial links in goods and labor markets did not offset, but rather amplified, the negative differential

impact of Chinese import competition on U.S. CZs documented in ADH. In addition, our findings

point to a striking disconnect between the large estimates of the differential impact of the China

shock (in ADH and in our extension of it) and their much smaller counterparts predicted by existing

quantitative spatial models.

6In contemporaneous work, Baqaee and Farhi (2019) provide a first-order approximation for the impact of
productivity shocks on wages and welfare in open economies linked through final and intermediate trade, without
agglomeration forces and employment responses. Our work is also related to the literature on sufficient statistics
in international trade, such as Arkolakis et al. (2012), Bartelme et al. (2020), and Kleinman et al. (2020).

7This includes the so-called ‘‘market access’’ approach (see e.g. Redding and Venables (2004); Donaldson and
Hornbeck (2016); Alder et al. (2015); Bartelme (2018)), since it is based on the equilibrium relationship between
endogenous regional outcomes and the endogenous market access. Notice also that our empirical specification remains
valid under a flexible structure of spatial links and arbitrary unobserved shocks, while the measurement of market
access requires restricting spatial links and observing all trade costs (before and after the shock).
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2.1 Empirical Specification

Our empirical analysis evaluates the differential effect of the China shock across U.S. CZs on three

labor market outcomes: log of average weekly wage, log of employment rate, and log of working-age

population. We extend the empirical specification in ADH by introducing two new measures of shock

exposure, in addition to the ADH employment exposure of CZ i to import competition at period

t (ICt
i ). In particular, we also consider the impact of a geographic gravity-based measure of region

i’s indirect exposure to the rise in import competition faced by nearby CZs (GCt
i ), as well as the

impact of a measure of CZ i’s expenditure exposure to Chinese import growth (IEt
i). Using these

measures, we estimate the following specification:

∆Y t
i =αt+βICICt

i+β
GCGCt

i+β
IEIEt

i+X
t
iλ+εti (2)

where Y t
i is a labor market outcome, αt is a time fixed-effect, and X t

i is a set of regional controls. Our

sample and outcome definitions are identical to those used in ADH for 722 CZs in mainland U.S.

over 1990-2000 and 2000-2007.

We now define the exposure measures used in equation (2). The next sections show how they arise

from a first-order approximation of various model specifications. As in ADH, CZ i’s employment

exposure to import competition is

ICt
i ≡
∑
s

`t0i,s∆M
t
China,s, (3)

where ∆M t
China,s is the change in imports from China in the 4-digit SIC sector s for a set of high-income

countries divided by the U.S. initial employment in sector s, and `t0i,s is CZ i’s employment share in

sector s in the pre-shock period t0.8 Our definition of ICt
i is identical to the shift-share instrumental

variable (IV) in ADH. Thus, βIC is the direct differential impact on the CZ’s labor market outcomes

of higher employment exposure to the growth of Chinese imports in other developed economies.

Our gravity-based measure of indirect exposure to the import competition faced by other CZs is

GCt
i ≡
∑
j 6=i

D−δij∑
k 6=iD

−δ
ik

ICt
j , (4)

where Dij is the bilateral distance between the population centroids of CZs i and j. Our specification

has a ‘‘gravity’’ structure: GCt
i is higher if i is near CZs with higher import competition exposure.

The parameter δ controls how much indirect exposure declines with distance – in our baseline, we

use typical estimates of the trade elasticity and set δ= 5. Accordingly, conditional on i’s import

competition exposure, βGC is the spatial indirect differential effect of the shock exposure of nearby

8We follow ADH by using 10-year equivalent changes in imports of eight high-income countries with trade data
covering the sample period (Australia, Denmark, Finland, Germany, Japan, New Zealand, Spain, and Switzerland),
and ten-year lagged employment shares (1980 for 1990-2000 and 1990 for 2000-2007).
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regions on i’s labor market outcomes. It intuitively captures the net effect of different sources of

spatial shock percolation in general equilibrium. These could be, for instance, labor demand spillovers

from lower domestic sales to nearby regions or labor supply spillovers due to in-migration from more

negatively exposed CZs.9

Finally, our measure of the CZ’s expenditure exposure to Chinese import growth is

IEt
i≡
∑
s

et0i,s∆M
t
China,s, (5)

where et0i,s is the pre-shock share of sector s in the total gross spending of CZ i. IEt
i captures the

notion that the expenditure shock in CZ i is stronger if i has a higher spending share on a sector s,

et0i,s, in which China expanded more the world output supply, as measured by ∆M t
China,s. Thus, βIE

is the differential effect of higher expenditure exposure to the shift in world output supply caused

by the China shock. Such an impact can be positive if either labor supply or labor demand rises

when there is a positive shock in the supply of goods used for final or intermediate consumption.

Alternatively, the impact can be negative if higher availability of Chinese imports in a sector induces

firms in the region to strongly substitute local labor for imported inputs.10 Notice that IEt
i , while

arising from our model below, is also closely related to the expenditure exposure measure proposed

by Hummels et al. (2014), but it is defined across regions instead of firms.

2.2 Data

To maintain our analysis close to that in ADH, our main data source is ADH’s online replication

package for all variables, except IEt
i . To compute this variable, we follow Gervais and Jensen (2019)

by measuring CZ i’s share of gross spending in sector s as et0i,s≡
ξ
t0
s +

∑
kξ
M,t0
sk a

t0
k `

t0
i,k

1+
∑
ka
t0
k `

t0
i,k

, where ξM,t0
sk is the

share of sector s in input spending of sector k, at0k is the ratio of input-to-labor spending in sector

k, and ξt0s is the share of sector s in final consumption. We compute ξM,t0
sk and ξt0s from the BEA

input-output table, and at0k from the NBER manufacturing database for manufacturing sectors and

from the WIOD database for non-manufacturing.11

Table B.1 and Figure B.1 in Appendix B.1 present moments of the main variables used in our

9We use the gravity structure in (4) to approximate (and formalize in our model below) these two main sources
of cross-regional links, highlighted in recent spatial gravity models – e.g., Allen and Arkolakis (2014) and Donaldson
and Hornbeck (2016). Appendix B.1 shows that our results are robust to alternative specifications for GCti .

10For example, import supply shocks can have a positive impact on labor supply because cheaper imports increase
the opportunity cost of leisure. The ambiguous effect of input prices on labor demand arises from the productivity
and substitution effects of higher foreign input supply – e.g., as in Feenstra and Hanson (1999), and Grossman and
Rossi-Hansberg (2008). Our model below clarifies how these mechanisms affect regional exposure to trade shocks.

11Our procedure imposes that input and final spending shares are the same in all CZs, and trade is balanced. In
Appendix C.1.2, we evaluate our procedure to construct et0i,s by running a regression of gross spending shares implied
by shipment inflows in the Commodity Flow Survey (CFS) on our measured spending shares when aggregated for
states and CFS commodity groups. We obtain a coefficient close to 1 and an R2 of 0.95.
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empirical application. Our two new exposure measures vary considerably across CZs, but their

standard deviations are around half of that of ADH’s employment exposure to import competition.

Despite being constructed with the same sector-level shifters, the different exposure shares used to

compute each measure imply that regions are not equally exposed to them. The correlation across

CZs is 0.53 between ICt
i and GCt

i , but it is only 0.16 between ICt
i and IEt

i .

2.3 Results

Table 1 reports estimates of our baseline specification, which includes ADH’s largest control set

(described in Table 1’s note), as well as two extra pre-shock controls: the share of gross spending on

manufacturing, and the gravity-based measure of indirect exposure to the manufacturing employment

share of nearby CZs. They control for potential confounding effects of exposure, through our two

additional channels, to the secular manufacturing decline in the period.

In columns (1), (3) and (5), we first estimate the regression in (2) using only ICt
i to replicate ADH’s

findings. The estimates indicate a relative decline in both the average wage and the employment

rate of CZs with higher employment in industries experiencing stronger growth in Chinese import

competition. Compared to the CZ in the 25th percentile of the distribution of ICt
i , the CZ in the 75th

percentile of the distribution experienced changes in the average wage and employment rate that

were 1.8 p.p. and 2.0 p.p. lower, respectively. These are large differential effects when we consider

that the standard deviation across CZs of changes in the average wage and the employment rate were

6.5 p.p. and 6.4 p.p., respectively. As in ADH, we find a non-significant impact of higher exposure

to Chinese import competition on the CZ’s population, but this estimated impact is also relatively

imprecise with a 95% confidence interval between -0.09 and 0.63. Notice however that we reject

substantial negative responses in local population.

We then turn to the full specification in (2) that also includes our two additional measures of

exposure to the China shock, GCt
i and IEt

i . In the second row of Table 1, we report the differential

impact of being close to CZs with higher exposure to import competition. Columns (2) and (4) show

that the negative impact of local shock exposure propagates to nearby regions: a CZ whose neighbors

are more exposed to Chinese import competition experienced relative declines in its average wage

and employment rate. The simultaneous reduction of wages and employment suggests that general

equilibrium links spatially spread the decline in regional labor demand and reinforce the effect of the

China shock. In column (6), we also estimate an indirect impact on population that is non-significant.

The third row of Table 1 reports the differential impact of higher spending exposure to the China

shock, IEt
i . For all outcomes, we find that the coefficients are not statistically different from zero.

Importantly, this is driven by lower point estimates with standard errors whose magnitude are similar

to those of the spatial indirect effects. Since IEt
i is based on gross expenditure shares, our findings

are consistent with weak differential responses in labor market outcomes to higher exposure to the
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Table 1: Differential Impact of the China Shock on U.S. CZs

Change in average Change in log of Change in log of
weekly log-wage employment rate working-age population
(1) (2) (3) (4) (5) (6)

ICti -0.471*** -0.383*** -0.519*** -0.369*** 0.273 0.127
(0.127) (0.113) (0.089) (0.079) (0.180) (0.155)

GCti -0.606*** -0.691*** 0.348
(0.156) (0.155) (0.212)

IEti 0.077 -0.154 0.418
(0.164) (0.143) (0.294)

Differential treatment effect (percentage points):
-1.78 -3.52 -1.97 -4.16 1.03 2.44

Notes: Pooled sample of 1,444 Commuting Zones in 1990-2000 and 2000-2007. All endogenous variables are multiplied by 100. All specifica-
tions include the following two sets of controls. Regional controls in ADH: period and census division dummies, manufacturing employment
share in 1990, college-educated population share in 1990, foreign-born population share in 1990, employment share of women in 1990, em-
ployment share in routine occupations in 1990, and average offshorability in 1990. Additional controls: CZ’s share of spending in manufac-
turing in 1990 (

∑
se
t0
i,s), and CZ’s indirect exposure to manufacturing employment share in 1990 (

∑
j 6=izij

∑
sl
t0
js, with zij≡D−5

ij /
∑
kD
−5
ik ).

Differential treatment effect: difference between the estimated treatment effects of CZs in the 75th and 25th percentiles of the empirical dis-
tribution of the estimated treatment effects. Robust standard errors in parentheses are clustered by state. *** p<0.01, ** p<0.05, * p<0.10

input supply expansion caused by the China shock. This is similar to the evidence in Pierce and

Schott (2016a) and Acemoglu et al. (2016a) of no differential growth in the national employment

of industries more intensive in inputs of sectors in which Chinese imports grew more.

To summarize, our empirical analysis yields three novel stylized facts. First, spatial links amplify

the negative impact of local exposure to import competition by generating relative reductions in

the labor demand of other nearby regions. Second, we find no evidence of attenuating responses on

employment and wages in regions more exposed to the positive shock in the supply of imported goods

for (final and intermediate) consumption. Third, we find no evidence of population responses to the

CZ’s indirect exposure to the shock in nearby CZs, in addition to the lack of population responses to

the CZ’s own employment exposure documented in ADH. Hence, the spatial links embedded in our

two new adjustment margins (namely, GCt
i and IEt

i ) do not offset the differential negative impact

of the China shock documented by ADH. Instead, the gravity-based measure of indirect exposure

implies even larger differential effects on employment and wage rates across CZs, but neither margin

induces significant differential responses in regional population.

Moreover, we find that our estimates are at odds with the small differential impact of the China

shock across regions implied by quantitative spatial frameworks in the literature. For instance,

Caliendo et al. (2019) (henceforth CDP) find that the China shock had a small impact on employment,

both on aggregate and differentially across U.S. states. In Figure 1, we compare the cross-state

variation in the predicted employment rate changes in CDP to those implied by the estimates

in columns (3) and (4) of Table 1. The figure shows a striking disconnect between the empirical

estimates and the quantitative predictions for the shock’s differential impact: those in CDP have
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Figure 1: Differential Impact of the China Shock on Log Employment Rate

Notes: The figure compares the differential impact of the China shock on the log employment rate across U.S. states (multiplied by 100)
between 2000 and 2007 that are predicted by the quantitative spatial model in CDP (vertical axis) and the estimates of the specification
in equation (2) (horizontal axis). The red dots correspond to the state average of the predicted effects implied by the specification in
column (3) of Table 1, and the blue hollow squares correspond to their conterparts implied by column (4) of Table 1. The red line is the
45-degree line. We obtain the predicted responses of CDP from their replication files. All variables are normalized to have mean zero.

a standard deviation of 0.05, while those implied by ADH (column (3) in Table 1) have a ten-times

larger standard deviation of 0.54. The disconnect can also be seen from the comparison between

the estimated coefficient obtained from the ADH specification across U.S. states when we set the

dependent variable to be either the log-change in employment rates observed in the data or those

predicted by CDP. The coefficient is -1.07 when we use the observed employment rate changes,

but it is only -0.01 when we use the predicted changes from CDP. Note that such a disconnect

could potentially arise from the fact that the general equilibrium model in CDP accounts for spatial

linkages, while the specification in ADH does not. However, this possibility is inconsistent with

the even larger differential treatment effects predicted by our extended empirical specification that

intuitively approximates for gravity-based spatial links, as shown by the blue squares in Figure 1.

A similar disconnect from the response patterns observed in the data also arises in other recent

quantitative models that predict small differential impacts of the China shock across U.S. CZs. For

instance, the model extension in Galle et al. (2021) with endogenous employment responses yields

a standard deviation of the predicted log-changes in employment rates across CZs of 0.08, which

is again much smaller than that implied by the estimates in ADH and in Table 1. As Table A.3 in

Galle et al. (2021) shows, these predicted differential effects are much smaller than those implied by

the specification in ADH: when regressing their predicted effects on the ADH exposure measure, one

obtains a coefficient of -0.04 for the log employment rate and -0.08 for the log average wage. These
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coefficients are much lower than the estimates reported in Table 1.

The disconnect we document is problematic and to some extent surprising because the analysis of

the spatial quantitative literature on the China shock is motivated exactly by the need to complement

the evidence of the differential effect in ADH with the general equilibrium channels of adjustment that

may affect the aggregate impact of the shock. However, existing models predict differential effects that

are an order of magnitude smaller than their empirical counterparts. This is true for both the original

specification in ADH and our extension of it that approximates for spatial links among markets. We

return to this discussion below with a series of formal tests for the fit of general equilibrium models.

2.4 Robustness and Additional Results

We now discuss the robustness of our baseline results. Appendix B.1 displays all the tables.

Employment Outcomes in ADH. In Table B.2, we follow ADH in the choice of the dependent

variables and focus on the change in the share of working-age population in manufacturing, non-

manufacturing, unemployed, and out of the labor force. For all outcomes, we estimate statistically

significant direct and indirect impacts of higher exposure to import competition. In Table B.3, we

exactly follow ADH in their choices of control set, data, sample, and weighting scheme. The only

difference now between our specification and that in ADH is the addition of the indirect exposure

GCt
i . In this case, estimates of the spatial indirect effects are similar for all outcomes, except for the

manufacturing employment share which is now smaller and non-significant.12

Alternative Empirical Specifications. Table B.4 shows that estimates are similar when we

consider only subsets of our exposure measures. We also document the absence of attenuating effects

from indirect exposure to spending shocks in nearby CZs. Column (2) of Table B.5 indicates that our

estimates of the employment and wages responses to the CZ’s direct and indirect shock exposure re-

main statistically significant at usual levels when we use the shift-share inference of Adão et al. (2019).

Columns (3)–(4) of Table B.5 report similar results when we control for state fixed-effects and lagged

population growth (as in Greenland et al. (2019)) to account for state-wide and persistent amenity

shocks. Column (5) of Table B.5 controls for the CZ’s initial manufacturing shares interacted with pe-

riod dummies, which absorbs period-specific manufacturing shocks. This reduces the estimated impact

of import competition on wages and employment, but only the direct effect on wages is not significant

at 10%. Column (6) of Table B.5 reports similar results when we weigh CZs by their population.

12Notice that if we replicate Table B.3 using only the period of 2000-2007 (similar to the specification in Figure
A.7 of Autor et al. (2021)), all estimates of direct and indirect effects become imprecise. The only exception is the
direct effect of ICti on the manufacturing employment share.
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Alternative Shock Exposure Measures. In Table B.6, we document the same reinforcing pat-

tern of indirect responses to the shock exposure of nearby regions when we compute the gravity-based

measure in (4) while setting the distance decay to one or eight (columns (2)-(3)), adjusting for the

size of nearby CZs (column (4)), and excluding out-of-state CZs (column (5)).

Table B.7 considers alternative definitions of expenditure shock exposure. In column (2), we

consider two separate exposure measures of the form in (5) built with sectoral spending shares out

of final and intermediate expenditure (respectively, IEF t
i and IEI ti ).

13 We find that employment

and wages do not differentially respond in CZs with higher shock exposure in terms of either final or

intermediate expenditure. Column (3) reports similar estimates when we exclude input spending on

the own sector in the computation of the intermediate spending shares. Lastly, column (4) reports

estimates when we approximate for cross-industry supply links using the ‘‘Leontief expenditure

shares’’ in Acemoglu et al. (2016a). In this case, we find that higher exposure to cheaper inputs from

China causes a relative decline in the CZ’s employment rate.

Table B.8 considers alternative measures of the China shock in each sector. This addresses

concerns related to ADH’s specification of the shifters in terms of import growth in other countries,

which may be affected by productivity shocks in U.S. CZs or demand shocks in importing countries.

In Panel A, we use China’s exporter fixed-effect in each sector that we obtain from a gravity regression

of log changes in bilateral trade shares on sector-origin and sector-destination fixed-effects. In Panel

B, we construct exposure measures using the same sector-level NTR gaps used in Pierce and Schott

(2016a). In both cases, we find similar qualitative patterns of responses to higher (direct or indirect)

exposure to Chinese import competition.

Additional Migration Outcomes. Table B.9 investigates the impact of the China shock on

gross migration flows across U.S. CZs. All measures of exposure to the China shock did not have

statistically significant impacts on either the inflow or the outflow of migrants across CZs, but some

of these estimates are imprecise and cannot rule out a wide range of responses.

3 Theory of General Equilibrium Effects in Space

Motivated by the evidence above, we now propose a simple spatial model that we use to show that the

effect of a trade shock on each region can be expressed in its reduced-form: in terms of the regional shock

exposure and the effects that each region’s exposure creates directly on its own outcomes and indirectly

on other regions through spatial links. Based on this characterization, we develop an empirical

13As in the baseline, we construct intermediate spending shares using the national input-output table and the
CZ’s sectoral employment shares: the share of intermediate spending on sector s is eit0i,s≡

∑
kξ
M,t0
sk at0k `

t0
i,k/
∑
ka
t0
k `

t0
i,k.

The share of final spending on sector s in CZ i, ef t0i,s, is the share of average household expenditure in i’s state across
3-digit SIC manufacturing sectors (constructed from the Consumer Expenditure Survey – see Appendix C.2.1).
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methodology that allows us to estimate both the direct and the indirect elasticities to regional shock

exposure, as well as connect the observed differential effects of a trade shock on regional outcomes to

that shock’s aggregate effect on the economy in general equilibrium. While our modeling choices are

guided by the stylized facts documented above, the next section shows how to extend our methodology

to incorporate additional mechanisms present in a wide class of quantitative spatial models.

3.1 Environment

We consider a multi-sector gravity trade model with I segmented markets grouped into countries.

Each market comprises a product and labor market with a set of consumers and workers that face

the same product and labor prices.14 Let i∈Ic denote a market in country c. In sector s of market

i, a representative competitive firm uses labor to produce a differentiated good with an endogenous

production cost of pi,s, and faces exogenous iceberg trade costs for selling to different destinations j of

τij,s. Each market is endowed with a mass of heterogeneous individuals, N̄i, that endogenously decide

whether or not to work by comparing the market’s wage rate wi to a government non-employment

transfer bi. Residents of market i face an income tax rate of vi.

Gravity Trade Demand. All individuals in market j maximize the same nested Constant Elas-

ticity of Substitution (CES) preferences. We consider a Cobb-Douglas aggregator of sector-specific

composite goods where ξj,s is the constant spending share on sector s. The sectoral composite good

is a CES aggregator over the differentiated sector-specific products from different origins, with σ>1

denoting the elasticity of substitution across origins.15 Since markets are competitive, the price of

market i’s sector s differentiated good in market j is τij,spi,s. Thus, utility maximization implies that

the bilateral sales in sector s from i to j are

Xij,s=xij,sξj,sEj =
(τij,spi,s)

1−σ∑
o(τoj,spo,s)

1−σ ξj,sEj, (6)

where Ej is j’s total expenditure. The associated consumption price index in i is

Pi=
∏
s

(Pi,s)
ξi,s , with Pi,s=

[∑
o

(τoi,spo,s)
1−σ

] 1
1−σ

. (7)

14We define a product market as a set of consumers with access to the same products and prices, a common approach
in industrial organization (e.g., Berry and Haile (2014)). Similarly, we define labor markets as sets of producers that
face the same labor cost, as in neoclassical and gravity trade models (e.g., Dixit and Norman (1980), Costinot and
Rodŕıguez-Clare (2014)). We incorporate wage differences across sectors when markets are groups of sectors within
a region – for instance, when each region has two distinct markets, one for the set of manufacturing industries and
another for the set of non-manufacturing industries. We return to this point in Section 4.

15This demand specification greatly simplifies exposition, but we show below that our insights do not rely on
assumptions of either nested CES preferences or a single elasticity of substitution for all sectors.
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This demand structure implies that market i’s revenue is the sum of sectoral sales to different

destinations, Ri =
∑

j,sXij,s. These sales, in turn, are a function of bilateral trade costs, τij,s, and

the trade elasticity, 1−σ. To the extent that τij,s depends on distance, we show below that our

model features the type of spatial percolation in regional labor demand shocks that we documented

in Section 2. This multi-sector gravity-based demand has become a standard way of modeling spatial

links in the trade literature – see e.g. Anderson (1979); Eaton and Kortum (2002); Costinot et al.

(2010); Arkolakis et al. (2012) and, for a review, Costinot and Rodŕıguez-Clare (2014).

Labor Supply. Individuals are heterogeneous and choose whether to be employed or not. If em-

ployed, individual ι supplies l(ι) efficiency units, obtaining an after-tax labor income of (1−vi)wil(ι).
If non-employed, individual ι’s income is (1− vi)biu(ι), with u(ι) denoting ι’s non-employment

income potential. The pair (l(ι),u(ι)) is drawn independently from a Frechet distribution with shape

parameter φ>1 and scale 1, so that the employment rate in market i is

ni=Pr

[
(1−vi)

wi
Pi
l(ι)≥(1−vi)

bi
Pi
u(ι)

]
=

wφi
wφi +bφi

. (8)

Up to a first order approximation, the log-change in the share of employed residents in market

i is ∆lnni = φ(1−ni)∆ln(wi/bi) and, therefore, is proportional to the change in the ratio of the

market’s wage rate to the return of the non-employment outside option, with a sensitivity controlled

by φ. Under this specification, a reduction in market’s labor demand leads to a decline in both

wages and employment rates, in line with the evidence in Section 2.16 This structure of selection of

heterogeneous individuals into employment is a standard way of modeling changes in the extensive

margin of labor supply – e.g., see Heckman and Sedlacek (1985), Rogerson (1988), Mulligan and

Rubinstein (2008), and Chetty et al. (2013a). It is also consistent with the evidence in Autor et al.

(2013) and Pierce and Schott (2020) that the number of recipients of different types of government

transfers increases in regions more exposed to the China shock.

The presence of heterogeneous individuals allows us to incorporate in our analysis a salient feature

of the data: individuals with lower initial income are more likely to become non-employed when

exposed to higher Chinese import competition (see Autor et al. (2014)). This is true in our model

because individuals differ in their efficiency, implying that the wage rate wi is not identical to the

observable average log of labor earning, lnwi, used to document the wage responses in Section 2.17

16Kim and Vogel (2021) impose similar assumptions to model the choice of labor force participation of heterogeneous
workers. The same employment rate expression arises if we relax the Frechet assumption as in Adão (2016), but
that would introduce an additional parameter to control selection forces in wages. All our results are identical if u(ι)
is a private benefit of not working rather than an income potential. Appendix A.5 shows that an expression for the
change in the employment rate in terms of changes in wi/bi also arises in a competitive search environment in which
firms post vacancies with a given wage and workers decide whether to search for a job. In this case, the employment
rate elasticity also depends on the efficiency parameter of the matching function (as in Kim and Vogel (2021)).

17Several models used to study the impact of trade shocks on regional economies cannot account for this fact since
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Instead, our model yields the following equation:

∆lnwi=∆lnwi−
1

φ
∆lnni. (9)

The decision of non-employment in our model depends on the reservation wage, bi, that needs to be

specified in terms of a numeraire. This is similar to the specification of the numeraire of international

transfers in Dekle et al. (2007) (see Ossa (2014) for a discussion) and of the outside numeraire good

in industrial organization. We assume that, in every market i, non-employment benefits are set

in terms of a common numeraire function of wages: bi= b̄iΩ({wj}j), where Ω(.) is homogeneous of

degree one and ωi≡ ∂lnΩ({wj}j)
∂lnwi

. This specification accounts for the evidence in Chodorow-Reich and

Karabarbounis (2016) that changes in the aggregate opportunity cost of employment – in our model

the average change in bi/Pi across i∈Ic – are positively, but only partially, correlated with changes

in the aggregate real wage – in our model the average change of wi/Pi across i∈Ic. In Section 5,

we use their evidence to specify Ω({wj}j) so that the non-employment payoff, bi/Pi= b̄iΩ({wj}j)/Pi,
is a function of real income in different markets.18

Production Technology. We start with a simple structure of production where, in each sector

s of market i, output is proportional to the representative firm’s endogenous employment choice,

Li,s, as well as to a term capturing economies of scale that are external to the firm and increasing

in the market’s employment rate. Specifically, the production function is Qi,s=( ni
1−ni )

ψLi,s and, thus,

the unit production cost is

pi,s=w1−ψφ
i bψφi . (10)

Agglomeration forces may arise from a variety of economic mechanisms such as entry externalities

(e.g., Krugman (1991)), Marshallian production externalities (e.g., Ethier (1982) and Kucheryavyy

et al. (2016)), and search frictions (see Appendix A.5). The importance of this mechanism to analyze

regional responses to local shocks in labor demand has been emphasized by several recent papers –

e.g., Greenstone et al. (2010), Kline and Moretti (2014), Dix-Carneiro and Kovak (2017), and Peters

(2019).19 Our specification captures the combination of these economic forces in a reduced-form way

through the combined strength of agglomeration and labor supply forces inψφ and, thus, our functional

they miss either non-employment or heterogeneity in worker efficiency – e.g., Burstein et al. (2019); Caliendo et al.
(2019). Adão (2016) and Kim and Vogel (2021) constitute recent exceptions.

18In Section 4, we specify bi= b̄iP
λ
i (Ω({wj}j))1−λ and show that the impact of import expenditure exposure on

labor market outcomes is increasing in λ. Given the evidence in Section 2, our estimated λ is close to zero in Section 5,
which roughly corresponds to our baseline specification of bi. Thus, our estimates and the evidence in Chodorow-Reich
and Karabarbounis (2016) reject that the non-employment payoff is invariant to shocks (i.e., that bi/Pi is constant
as imposed in Caliendo et al. (2019) and Galle et al. (2021), in which case λ would be one).

19This channel is absent in recent quantitative spatial frameworks based on the Ricardian model of Eaton and
Kortum (2002) used to quantify the impact of trade shocks on regional economies – e.g. Caliendo et al. (2019), Lyon
and Waugh (2019), Galle et al. (2021), and Kim and Vogel (2021).
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form choice is guided by its convenient implication that the pass-through from wages to prices is the

constant 1−ψφ. As shown below, this connects the combined strength of agglomeration and labor sup-

ply forces in ψφ to the curvature of the regional labor demand function. In Section 4, we substantially

generalize the structure of production by introducing intermediate inputs. Such an extension implies

that the pass-through from wages to prices decreases with the intermediate input share in production.

Equilibrium. To analyze the equilibrium, we characterize the labor demand in market i. Since

labor is the only factor of production, this is simply given by the sum of sectoral revenues in equation

(6) (after substituting for the production cost in (10)):

Ri=
∑
s

∑
j

τ 1−σ
ij,s w

−κ
i b̄κ−σ+1

i∑
oτ

1−σ
oj,s w

−κ
o b̄κ−σ+1

o

ξj,sEj, (11)

where κ≡(σ−1)(1−ψφ) is a parameter determining the sensitivity of labor demand to changes in

the wage rate of different markets (conditional on total spending). As such, κ is a key determinant

of the differential responses in wages and employment to shocks in economic fundamentals. In our

model, the labor demand elasticity is lower if the trade elasticity, (σ−1), is lower, or the combined

strength of the agglomeration and labor supply elasticities, ψφ, is higher.

To solve for the equilibrium and simplify our analysis, we impose that the local income tax vi

is set such that the benefit payments equal the tax revenues in equilibrium: vi(Wi+Bi)=Bi, with

Wi and Bi denoting total wage and benefit payments in market i, respectively. The market level

spending is thus Ei=Wi.
20 Given our labor supply structure, total income in market i is given by

Wi=wφi (wφi +bφi )
1−φ
φ N̄i% where %≡Γ(1−1/φ) and Γ(.) is the gamma function. This indicates that, in

our model, φ determines the elasticity of both employment and spending in each market to changes

in the local wage rate. For this reason, φ is also key to determine how labor market outcomes respond

to shocks in economic fundamentals.

We then define the equilibrium as a wage vector that yields an excess labor demand of zero in

every market. Formally, consider a wage vector w≡{wo}o with wm≡1 for an arbitrary numeraire

market m. It is an equilibrium if Di(w|τ )=0 for all i, such that

Di(w|τ )≡
∑
j

(∑
s

τ 1−σ
ij,s w

−κ
i b̄κ−σ+1

i∑
oτ

1−σ
oj,s w

−κ
o b̄κ−σ+1

o

ξj,s−Ii=j

)
wφj

(
wφj +b̄φj (Ω(w))φ

) 1−φ
φ
N̄j%, (12)

where τ ≡{τid,s}ids is a vector of bilateral trade costs, and Ii=j is an indicator function that equals

one if, and only if, i=j. Note that when ψ=0 and φ→1, equation (12) is isomorphic to the excess

20This assumption is not important for our results. In Section 4, we show that an arbitrary structure of (endogenous
and exogenous) transfers across markets only determines how Ei depends on wages in different markets. In addition,
our empirical findings below are similar when fiscal transfers are endogenous (as specified in Appendix A.2.6).
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demand function of a multi-sector gravity trade model with a fixed labor supply (see e.g. Costinot

et al. (2010)), and thus all our theoretical results below apply also to gravity trade models.

3.2 General Equilibrium Effects of Trade Shocks in Space

We now study how exogenous changes in trade costs τij,s affect different markets. Given the definition

of τij,s, our analysis applies also to productivity shocks when changes in trade costs are the same

for all destinations. We use 0 superscripts to denote variables in the initial equilibrium, z0
j ; hats to

denote log changes in variables between the initial and new equilibria, ẑj≡ ln(zj/z
0
j ); bold variables

to denote stacked vectors of market outcomes, z≡{zi}i; and bar bold variables to denote matrices

with bilateral variables associated with origin i and destination j, z̄≡{zij}i,j.
The response of the wage rate in each market to changes in trade costs follows directly from the

total differentiation of the equilibrium definition in terms of excess labor demand. This yields the

two key objects in our analysis. The first is the partial equilibrium shift in the excess labor demand

caused by the shock (holding wages constant),

η̂(τ̂ )≡(R̄
0
)−1
(
∇lnτD

(
w0|τ 0

))
τ̂ , (13)

where R̄
0

is the diagonal matrix of initial revenues. The second is the ‘‘spatial links’’ matrix,

γ̄0≡−(R̄
0
)−1
(
∇lnwD

(
w0|τ 0

))
, (14)

which captures the elasticity of a market’s excess labor demand to wages in different markets. Written

as such, our analysis is a traditional comparative statics exercise in general equilibrium, as in Arrow

and Hahn (1971)and Mas-Colell et al. (1995).

We can express the wage response (in terms of the economy’s numeraire) to trade shocks as

γ̄0ŵ= η̂(τ̂ ). (15)

In the rest of this section, we first establish that the excess demand shift in each market, η̂i(τ̂ ), takes

the form of a shift-share variable based on the sum of trade shocks interacted with market-specific

exposure shares. We then characterize the sources of spatial links embedded in γ̄0. We finally invert

expression (15) to characterize the reduced-form elasticities that are sufficient to compute the general

equilibrium impact of the shock exposure vector, η̂(τ̂ ), on market-level outcomes.
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3.2.1 A Shift-Share Measure for Shocks in Excess Labor Demand

A log-linearization of equation (12) implies that η̂i(τ̂ ) takes the form of a shift-share variable:

η̂i(τ̂ )=(1−σ)
∑
s

`0
i,sµi,s(τ̂ ), (16)

where `0
i,s is the initial share of labor in market i employed in sector s, and µi,s(τ̂ ) is the shift in the

demand for i’s goods in sector s,

µi,s(τ̂ )≡
∑
j

r0
ij,s

(
τ̂ij,s−

∑
o

x0
oj,sτ̂oj,s

)
, (17)

with r0
ij,s≡X0

ij,s/
∑

dX
0
id,s denoting the initial share of market j in market i’s sales in sector s. η̂i(τ̂ ) is

the market’s ‘‘revenue shock exposure’’ since it is the sum across sectors of the shock to the demand

for i’s goods in each sector, µi,s(τ̂ ), weighted by the sector’s initial share in i’s employment `0
i,s. The

sector-level demand shock µi,s(τ̂ ) itself is the sum across destinations j of the impact of market i’s

own trade shock on the demand for its goods minus the demand shift caused by competitors’ trade

shocks in that sector, weighted by the revenue importance of each destination r0
ij,s. Note that all

components of η̂i(τ̂ ) can be computed with measures of the bilateral trade shocks and information

on initial bilateral trade flows.21

The excess labor demand shift in (16) is closely related to shift-share measures of exposure to

sectoral shocks used in the literature (such as that used in Section 2). To see this, consider a foreign

shock with an identical impact on the sectoral demand of all destinations: formally, τ̂oj,s=0 for all

o 6= F and ζ̂F,s≡ (1−σ)x0
Fj,sτ̂Fj,s for all j. Then, ζ̂F,s is the common impact, the ‘‘shift’’, that the

shock in the foreign country has on the sectoral demand of every other market, and thus

η̂i=−
∑
s

`0
i,sζ̂F,s. (18)

If the foreign country becomes more productive in sector s (ζ̂F,s>0), then every other market suffers a

negative shift in its excess labor demand, η̂i<0 for i 6=F. The magnitude of this impact is proportional

to the initial share of sector s in i’s labor demand, as measured by the ‘‘share’’ `0
i,s. In Section 5, we

use the common component of the growth in sectoral Chinese imports across destinations to link

the movement in a region’s excess labor demand to its shift-share exposure to import competition

(as defined in ADH and in Section 2).

21Note that, with a single sector, η̂i(τ̂ ) is the partial equilibrium (i.e. holding wages constant in all markets) change
in the firm market access. The concept of firm market access introduced in Anderson and Van Wincoop (2003) and
Redding and Venables (2004) is widely used to measure the revenue potential of a location in the literature (e.g.,
Redding and Sturm (2008), Donaldson and Hornbeck (2016), Bartelme (2018)).
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3.2.2 Spatial Links in General Equilibrium

We proceed with the characterization of the spatial links in the economy, i.e. γ̄0 in equation (14).

This matrix summarizes the spatial percolation of shocks in our model as it regulates how much wage

changes in one market affect excess labor demand in other markets. By defining φ0
i ≡φ−(φ−1)n0

i ,

we establish in Appendix A.1 that

γ0
ij =

(
φ0
i +κ

)
I[i=j]−ρ0

ij where ρ0
ij≡r0

ijφ
0
j+κ

∑
s,d

`0
i,sr

0
id,sx

0
jd,s+ω

0
j

∑
d

r0
id(φ

0
i−φ0

d). (19)

The first component of this expression is the own-elasticity of i’s excess labor demand to its wage,

which corresponds to the sum of the labor demand and labor supply elasticities, regulated by κ and

φ0
i , respectively. Following the usual logic in supply-demand frameworks, a lower value of φ0

i +κ

implies stronger wage responses to the same shock.

The second component ρ0
ij is the cross-wage elasticity of excess labor demand. A higher ρ0

ij creates

a stronger dependence of outcomes in i to labor demand shocks in j. Such a dependence arises from

three sources. The term r0
ijφ

0
j captures the positive impact that an increase on j’s wage has on its total

expenditure (proportional to φ0
j) and, consequently, on the sales of i (proportional to the share of j in i’s

revenue, r0
ij). The next term captures endogenous changes in excess labor demand arising from demand

substitution across suppliers due to changes in j’s labor cost. It is proportional to the sensitivity of

demand to wages κ and, importantly, to the covariance between i’s sales `0
i,sr

0
id,s and j’s market share

x0
jd,s across sectors and destinations. The last term is the impact on excess labor demand of changes in

labor supply due to the non-employment benefit’s numeraire and arises because of the heterogeneity

in the labor supply elasticity across markets – in fact, it is zero if n0
i =n0 and, thus, φ0

i =φ0 for all i.

3.2.3 General Equilibrium Effects in Space and their Determinants

We now characterize the reduced-form elasticity of wages to trade shocks in general equilibrium.

This is a ‘‘sufficient statistics’’ characterization: it yields responses in terms of market-level measures

of shock exposure (determined by η̂i in (16)) and market-to-market reduced-form elasticities to these

measures (determined by γij in (19)). Both components are functions of variables observed in the

initial equilibrium, as well as parameters controlling the elasticities in the model. Appendix A.1

contains the proofs of the results in this section.

Throughout our analysis, we impose sufficient conditions for equilibrium uniqueness given any set

of exogenous trade shifters τ . This guarantees that our counterfactual analysis yields unambiguous

predictions for the impact of shocks in economic fundamentals. Following Arrow and Hahn (1971)

T.9.12 (p. 234), we assume that the excess demand system satisfies diagonal dominance: there exists
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{hi}i 6=m�0 such that, for all i 6=m,22

hiγ
0
ii>

∑
j 6=m,i

hj|γ0
ij|. (20)

Theorem 1. (Sufficient Statistics for Reduced-Form Responses) Consider any shock to bilateral

shifters τ̂ . If condition (20) holds, then (up to a first-order approximation)

ŵi=βii(θ|W0)η̂i(τ̂ )︸ ︷︷ ︸
Direct effect

+
∑
j 6=i

βij(θ|W0)η̂j(τ̂ )︸ ︷︷ ︸
Spatial indirect effect

, with βij =
1

φ0
j+κ

(
I[i=j]+γ̃ij+

∞∑
d=2

γ̃
(d)
ij

)
, (21)

where γ̃
(d)
ij is the i-j entry of (¯̃γ)d such that γ̃ij≡(φ0

i +κ)−1ρ0
ijI[i,j 6=m], θ≡(φ,κ) is a parameter vector,

and W0≡{n0
i ,ω

0
i ,{X0

ij,s}j,s}i is a matrix of initial conditions.

Theorem 1 yields a set of sufficient statistics for counterfactual analysis in general equilibrium:

the vector of excess labor demand shifts (i.e, η̂i in (16)), as well as the reduced-form elasticities to

such measures (i.e., βij in (21)). The formula for wage changes (in terms of the economy’s numeraire)

in (21) aggregates the direct effect of the market’s own shock exposure and the spatial indirect effect

of the shock exposure of all other markets, weighted by the reduced-form elasticities βii and βij,

respectively. The aggregation formula thus maps measures of shock exposure in partial equilibrium

for all markets (i.e., the shifts in excess labor demand) into general equilibrium responses of wages

in each market. As a special case, it provides a closed-form characterization (up to a first-order

approximation) for the solution of the non-linear system of equations for counterfactuals in gravity

trade models (see e.g. Proposition 2 in Arkolakis et al. (2012)).

The reduced-form elasticity βij is a series expansion of the spatial links matrix γ̄0. Thus, spatial

spillovers are stronger between markets with tighter ties in terms of bilateral sales or competition,

as captured by ρ0
ij, and in terms of third-market connections in the network, as captured by the

power series term. Intuitively, any wage change necessary to restore market clearing in market j

following an exogenous shock to its labor demand will endogenously shift labor demand in all other

markets i through changes in both j’s demand for i products and j’s market share in other markets

served by i. These endogenous shifts in the labor demand of other markets must also be corrected

in general equilibrium, triggering the multiple rounds of adjustment summarized in the higher-order

terms of the power series. This generates a pattern of spatial percolation of regional shocks that is

similar to that of the percolation of shocks across production networks (Acemoglu et al. (2016b) and

Carvalho and Tahbaz-Salehi (2019)), since spatial models share the same mathematical architecture

of network models (see e.g Allen et al. (2020a)).

22This assumption is weaker than the gross substitution property (i.e., γii>0 and γij<0 for all i 6=j) that yields
uniqueness of one-sector gravity trade models with exogenous labor supply (Alvarez and Lucas, 2007).
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The representation in (21) links our model to the evidence in Section 2: for foreign shocks in

which η̂i takes the shift-share form in (18), the direct effect, βiiη̂i, is related to the direct impact

of the market’s employment exposure to import competition ICt
i , while the spatial indirect effect,∑

j 6=iβij η̂j, is related to the impact of the gravity-based measure of exposure to shocks in other

markets, GCt
i . This link between the model’s predictions and the empirical evidence emphasizes

the importance of measuring the magnitude of both the direct and indirect elasticities in order to

correctly quantify the aggregate effect of trade shocks and, thus, also highlights the importance of

solving the disconnect discussed in the previous section.

We can also use this characterization to rationalize our empirical findings regarding the sign and

size of the direct and spatial indirect effects of regional exposure to import competition. We first

show that trade links generate the type of reinforcing spatial indirect effects documented in Section

2 – that is, direct and indirect reduced-form elasticities that have the same sign.

Corollary 1. If κ>0 and maxi,j|n0
i−n0

j | is low enough, then γ̃ij≥0 and βij≥0 ∀i,j.

Consider again the same foreign productivity gain introduced in Section 3.2.1 (ζ̂F,s>0), while

setting the foreign wage to be the economy’s numeraire (βiF =0 for all i). This leads to a negative

shift in i’s excess demand (η̂i<0, for all i 6=F ), which then has a negative effect not only on the labor

demand in that market, but also on all other markets (βji≥0). Intuitively, the negative demand

shift pushes down i’s wage (relative to the foreign country) and, consequently, also the trade demand

in all other markets j through losses in both their sales to i (captured by r0
jiφ

0
i ) and their market

share in all destinations (captured by
∑

s,d`
0
j,sr

0
jd,sx

0
id,s). In this case, spatial links between regions

reinforce the negative direct effect of an import competition shock. The bound on the dispersion

of n0
i guarantees that these demand channels are not overturned by labor supply changes due to the

impact of wages on the non-employment payoff.

Second, we investigate the determinants of the size of the reduced-form elasticities to understand

the drivers of the large differential effects estimated in Section 2. To do so, it is useful to focus on

the special case in which the spatial indirect effects are identical, which arises when labor supply

elasticities and trade links are the same in all markets.

Corollary 2. Assume that markets have the same labor supply elasticity (φ0
j =φ0) and trade links

(ξj,s=ξs, x
0
ij,s=x0

i,s, and
∑
sξsx

0
i,sx

0
j,s∑

sξsx
0
i,s

=χj). Then,

ŵi = 1
κ+φ0

η̂i(τ̂ )+η̄ such that η̄≡
∑

j
βj

κ+φ0
η̂j(τ̂ ) . (22)

The direct reduced-form elasticity (κ+φ0)−1 is positive, increasing in ψφ, and decreasing in σ, and

the indirect reduced-form elasticity βj is positive and increasing in j’s size.

The differential direct impact of shock exposure on wages, (κ+φ0)−1, is decreasing on the labor

demand elasticity, κ. In fact, our estimates below indicate that the disconnect documented in Section
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2.3 arises in part from the high value for the labor demand elasticity implied by Ricardian spatial

models (in which κ=σ−1 due to the lack of agglomeration forces, ψ=0). The corollary also indicates

that market j’s (symmetric) impact on other markets is proportional to its size.

In addition, the symmetry in spatial links gives rise to an ‘‘endogenous’’ fixed-effect, η̄, comprising

all the spatial indirect effects of the shock in general equilibrium. Hence, Corollary 2 establishes

sufficient conditions for wage changes in a market to be a linear combination of its shift-share shock

exposure plus a common fixed-effect. This special case thus yields a tight connection between our

characterization and empirical shift-share specifications that followed Bartik (1991). The frameworks

proposed in Nakamura and Steinsson (2014) and Beraja et al. (2019), given the absence of trade

costs, are akin the case of identical spatial linkages across markets considered in Corollary 2.

Lastly, we characterize the importance of the expenditure shock exposure. While it does not

matter for responses in wages and employment, it does affect changes in the price index.

Corollary 3. Consider any shock to bilateral shifters τ̂ . If condition (20) holds, then (up to a

first-order approximation)

P̂i=
∑
j

βCij η̂j(τ̂ )+η̂Ci (τ̂ ) where (23)

η̂Ci (τ̂ )=
∑
s,o

ξi,sx
0
oi,sτ̂oi,s, and βCij≡

∑
o

(
x0
oi

κ

σ−1
+

(
1− κ

σ−1

)
ω0
o

)
βoj(θ|W0). (24)

The price index change combines two effects. The first term,
∑

jβ
C
ij η̂j(τ̂ ), measures the impact

of the shock on the market’s consumption cost through the endogenous changes in production costs

arising from the wage responses in Theorem 1. The second term, η̂Ci (τ̂ ), measures the shock’s impact on

the exogenous component of consumption costs. It is the average change in bilateral trade shifters of a

destination market, weighted by its final spending share across sectors and origins. To gain intuition for

this term, consider again the foreign sectoral shock introduced in Section 3.2.1 for which η̂Ci (τ̂ ) is a shift-

share variable based on sectoral spending shares, η̂Ci ∝−
∑

sξi,sζ̂F,s. In this case, the price index falls

more in markets with a higher initial spending share on sectors in which the foreign country experienced

stronger productivity growth. In the absence of intermediate goods, final and gross spending shares

are equal, implying that η̂Ci is proportional to the import expenditure exposure IEi used in Section 2.

Two comments are useful at this point. First, in this simple model, consumption cost exposure

does not affect wages and employment across markets. While this is consistent with the evidence in

Section 2, Section 4 shows that the sensitivity of labor supply to the consumption price index controls

how much η̂Ci (τ̂ ) affects labor market outcomes. Second, changes in the real wage, wi/Pi, combine

the direct impact of the shock on consumption costs, measured by η̂Ci (τ̂ ), with the terms-of-trade

effects implied by the shock, measured by
∑

j(βij−βCij )η̂j(τ̂ ).23

23Note that in our framework the welfare of an individual corresponds to real wage (if working), or to real benefit
from non-employment (if not working). Even in a setting with a representative agent with endogenous labor supply,
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3.3 From Theory to an Empirical Specification

In this section, we use Theorem 1 to derive an empirical methodology that yields the general equi-

librium impact of observed trade shocks on regional outcomes. We consider two observed equilibria

that differ because of the realization of random shocks, τ̂ij,s, and assume that we observe a component

of these shocks, τ̂ obs
ij,s . Without loss of generality, we can define the unobserved component of the

shocks as τ̂ unbs = τ̂−τ̂ obs, so that

η̂i(τ̂ )=
∑
s

`0
i,sẑ

obs
i,s +η̂i(τ̂

unbs), (25)

where ẑobs
i,s ≡(1−σ)µi,s(τ̂

obs) is the impact of τ̂ obs on market i’s sector s demand (defined in (17)).

We show in Appendix A.1.6 that by combining the decomposition in (25), the wage response

in (21), and the supply relationships in (8)–(9), we obtain a structural relationship between changes

in observed labor market outcomes and market exposure to observed and unobserved shocks:[
∆lnwi

∆lnni

]
=

[
αw

αn

]
+
∑
j

[
βwij(θ|W0)

βnij(θ|W0)

](∑
s

`0
j,sẑ

obs
j,s

)
+

[
νwi

νni

]
, (26)

where βwij(θ|W0) ≡ (n0
iβij + (1−n0

i )
∑

dω
0
dβdj) and βnij(θ|W0) ≡ φ(1−n0

i )(βij −
∑

dω
0
dβdj), with

βij = βij(θ|W0) given by (21). In this expression, αw and νwi are, respectively, the average and

idiosyncratic changes in wages generated by the unobserved component of trade shocks τ̂ unbs.24 αn

and νni are similarly defined for changes in the employment rate.

Through the lens of our model, both the residuals (νwi ,ν
n
i ) and the constants (αw,αn) are not

functions of the observed shocks in ẑobs
i,s . Because of this property, knowledge of the reduced-form

elasticities βwij(θ|W0) and βnij(θ|W0) is sufficient to compute both the differential and the aggregate

impact in general equilibrium of the observed shock exposure of markets on employment and wages.

This has two important implications. First, in contrast to common empirical specifications in the

literature (like those in Section 2), our model allows estimates of the reduced-form elasticities based

on equation (26) to be aggregated in order to obtain the general equilibrium impact of the observed

shock. Second, one can also use equation (26) to test whether the model’s predicted responses to

observed shocks are consistent with observed responses in the data. The credibility of the model’s

predictions is severely curtailed if its reduced-form elasticities do not generate differential responses

consistent with those observed in the data, since these elasticities are sufficient determinants of the

model’s differential and aggregate predicted effects following trade shocks.

To take equation (26) to the data, we impose the following assumption.

it is easy to show that the equivalent variation associated with a trade shock is proportional to the change in the
real wage (see Appendix B.3.1 of the old version of our paper, Adao et al. (2020)).

24Formally, αw≡I−1
∑
i,jβ

w
ij(θ|W

0)E[η̂j(τ̂
unbs)] and νwi ≡

∑
jβ
w
ij(θ|W

0)η̂j(τ̂
unbs)−αw.
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Assumption 1. For all markets and sectors, (i) the observed shock has the same expectation,

E[τ̂ obsij,s |W0]=τ obs, and (ii) observed and unobserved shocks are uncorrelated,

Cov(τ̂ obsij,s ,τ̂
unbs
od,k |W0)=0. (27)

This assumption guarantees the causal interpretation of estimates in the literature of the impact

of trade cost shocks on trade flows, or the impact of changes in import tariffs or foreign productivity

on firms, industries and regions (see e.g. Autor et al. (2013), Kovak (2013) and Pierce and Schott

(2016a)). It is equivalent to the quasi-random assignment of shocks that yields identification of

shift-share reduced-form specifications – see Adão et al. (2019). Since this assumption is not testable,

how reasonable it is must be evaluated in each particular application. We return to this point below

in the context of the China shock.25

As shown in Appendix A.1.7, the orthogonality assumption in (27) implies that the unobserved

residuals in (26) are orthogonal to measures of market-level exposure to the observed shocks:

E

[
νwi
∑
j

hwijZj

]
=E

[
νni
∑
j

hnijZj

]
=0 for any real matrices {hwij,hnij}j, (28)

where Zj ≡
∑

s `
0
j,s(ẑ

obs
j,s − z̄obs

j,s ) is market j’s exposure to the de-meaned shock, with z̄obs
j,s ≡

(1− σ)µj,s(τ
obs) computed by setting all observed shocks to their expected value. The use of

de-meaned shifters avoids identification threats arising, even under (27), from markets being more

exposed to all types of random shocks (observed or unobserved).

We now discuss a number of advantages of using (26) and (28) for empirical analyses of the aggre-

gate and differential effects of observed trade shocks. First, our specification links in a transparent

way the shock’s impact in general equilibrium to exposure measures and reduced-form effects (direct

and indirect). Equations (26) and (28) then connect such an impact to moments in the data associated

with the elasticity of market-level outcomes to the exposure of different markets to the exogenous

shock. The empirical content of (26) and (28) is a significant departure from the common approach

of computing the shock’s general equilibrium impact using calibrated spatial models – either in

quantitative frameworks with rich calibrated spatial links (as in Redding and Rossi-Hansberg (2017)),

or in frameworks combining an empirical strategy of the form in (22) and a calibrated spatial model

to quantify the common ‘‘missing intercept’’ (as in Kovak (2013); Nakamura and Steinsson (2014);

Mian and Sufi (2014); Beraja et al. (2019)). As Chodorow-Reich (2020) points out, this common

approach has the cost of generating an aggregate impact that ‘‘depends heavily, and sometimes

non-transparently, on the ingredients in the model as well as the particular parametrization.’’

Second, (26) and (28) can be used to estimate the parameter vector θ and, therefore, βwij(θ|W0) and

25It is easy to allow for shocks in b̄i (akin to labor supply or amenities shocks) to affect outcomes through the

definitions of νwi and νni . In this case, in addition to condition (27), we must assume that Cov(τ̂obsij,s ,
ˆ̄bo|W0)=0.
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βnij(θ|W0). Intuitively, identification comes from how market-level outcomes directly and indirectly

respond to the shock exposure of markets with stronger (bilateral and higher-order) cross-market links

in γij (as defined in (19)). Formally, it follows from applying the usual rank condition for non-linear

moment conditions in Newey and McFadden (1994) and Chen et al. (2014) to the specification in

(26) that is non-linear in θ.26 In addition, we show in Appendix A.1.8 that the estimation of θ with

(26)–(28) is more efficient than using ‘‘intuitive’’ instrumental variables for structural relationships

between endogenous outcomes. Formally, we build on Chamberlain (1987) to derive the optimal

moment conditions in the context of our general equilibrium model: that is, we characterize the

weights, {hwij,hnij}j, that minimize the variance of the GMM estimator of θ based on (26)–(28).

The efficiency gains arise because the optimal weights {hwij,hnij}j rely on both market i’s own shock

exposure associated with θ as well as its indirect exposure to other markets in general equilibrium.

Third, (26) and (28) yield testable predictions for fully specified spatial models. Specifically,

when θ is known, the predicted response in any labor market outcome Yi to the observed shock can

be written as Ŷ M
i (Z|θ,W 0)≡

∑
jβ

Y
ij (θ|W0)Zj and, therefore,

Ŷi=αY +ρY Ŷ M
i (Z|θ,W 0)+νYi with E[νYi Ŷ

M
i (Z|θ,W 0)]=0, (29)

where Ŷi is the log-change observed in the data. Under the null hypothesis that the model is well

specified, the pass-though coefficient from predicted to actual changes in any outcome is one (i.e.,

ρY =1). Note that this test can be applied even when θ is estimated with moments that are different

from our reduced-form specification in (26), as predicted responses to observed shocks may not be

consistent with their estimated counterparts – for example, see the discussion in Section 2.3. In

addition, our test retains its validity even if other shocks may drive much of the cross-market variation

in the outcome of interest, because the orthogonality condition in (27) guarantees the identification

of the impact of the observed shock while holding other unobserved shocks constant. In this sense,

our procedure is a clear improvement to statistical decomposition methods (such as the one proposed

by Kehoe et al. (2017)) whose conclusions depend on the importance of other unobserved shocks

(see, for example, the discussion in Antràs and Chor (2021)).

Importantly, we view this additional moment as having the advantage of relying exactly on

the reduced-form elasticities that are sufficient for the computation of the model’s counterfactual

26Leveraging the facts that (26) is additive in the residual and that θ only enters (26) through func-
tions that are multiplicative on the random variables ẑobsj,s , identification of θ follows from the rank of∑
i,j,d

(
hwij∇θβ

w
id(θ|W),hnij∇θβ

n
id(θ|W

0)
)
E[ZjZd|W0] being equal to dim(θ). Notice that, since E[ZjZd|W0] 6= 0

for some j and d is a weak condition (as it includes j= d), identification essentially relies on all entries of θ being
associated with heterogeneous (direct and indirect) reduced-form effects across markets. In other words, we cannot
identify parameters that are only associated with a common component of the reduced-form effect on all markets i.
This condition is weaker than the Stable Unit Treatment Value Assumption (SUTVA) that yields identification of the
direct reduced-form elasticity to local shock exposure in structural models with a common ‘‘missing intercept’’ – see
result 2 of Chodorow-Reich (2020). SUTVA rules out that shock exposure of a region differentially affects outcomes
in other regions, as we documented to be the case for the China shock in Section 2.
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predictions in general equilibrium. Therefore, if one rejects the model’s predicted responses using

equation (29), the credibility of the model’s counterfactual predictions is undermined. Intuitively,

as long as the orthogonality condition in (27) holds, an estimated coefficient much larger than one

suggests that the predicted responses in the model need to be re-scaled by a large coefficient to

match the differential impact of the observed shock across markets and, therefore, are too small. The

opposite is true if the estimated fit coefficient is small and non-significant. Since we show below that

a version of (26)–(28) holds in a general class of spatial models, this discussion applies to a growing

literature on quantitative spatial economics whose ultimate goal is measuring the general equilibrium

impact of shocks in economic fundamentals across different markets.

Fourth, it is worth mentioning that the estimation methodology based on (26)–(28) remains valid

under a flexible structure of spatial links and arbitrary unobserved shocks. Such a flexibility is in

contrast with the ‘‘market access’’ approach in Donaldson and Hornbeck (2016). In such a setting,

market access is an endogenous variable obtained from solving the general equilibrium model under

restrictive assumptions on the economy’s spatial links – specifically, a single sector with symmetric

trade costs that are fully observed before and after the shock.27 Even under these assumptions, one

cannot simply aggregate the empirical specification to compute the general equilibrium impact of

changes in market access as it also involves an endogenous common component that is not separately

identified from the constant.

Finally, our empirical strategy is distinct from an indirect inference procedure that calibrates

parameters to match arbitrarily chosen moments generated in the model with simulated shocks. Such

a procedure may not give accurate estimates of the (direct and indirect) reduced-form elasticities

if the chosen moments are not closely related to the structural relationship in (26), or the simulated

shocks do not satisfy our Assumption 1.

So far, we have discussed the advantages of using equation (26) for empirical analysis. The use

of this expression is, however, subject to two important caveats. The first is that the separability

of the unobserved residuals (νwi ,ν
n
i ), which is necessary for the derivation of the moment conditions

above, follows from the log-linearization of the model around the initial equilibrium. This raises the

concern that equation (26) may be a poor approximation for the model’s predictions depending on

the application. We propose, and implement below, two ways of addressing such a concern that rely

on the exact solution for the model’s predictions that we obtain with the integral of our formulas

(as described in Appendix A.3.3). First, once the model has been estimated, we attest the quality of

the linear approximation by showing that it yields predictions that are similar to the exact predicted

impact of the observed shock. Second, to account for non-linear responses to the observed shock,

27Donaldson and Hornbeck (2016) point out that ‘‘the calculation of market access (via equation (9)) requires
the measurement of all trade costs.’’ This is true even if one extends their environment to obtain expressions in terms
of changes in market access. In this case, knowledge of initial trade flows subsumes knowledge of initial trade costs,
but it is still necessary to observe all components of bilateral trade shocks (in our notation, τ̂ unbs = 0). In gravity
trade models, identifying τ̂ typically requires assuming symmetric shocks, as in Head and Ries (2001).
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we show that the estimates of θ are similar when we extend equation (26) to use the integral of our

first-order formulas for the impact of the observed shock. Thus, results are robust to removing any

‘‘approximation error’’ from the structural residual in (26). Appendix B.2.2 presents further details

about the implementation of these procedures.

Lastly, one may also be concerned that we specify the reduced-form elasticities as parametric

functions of the data in W0 and the parameters in θ. We follow this approach because a type of

dimensionality curse prevents the non-parametric estimation of the reduced-form elasticities in (26),

as we only observe outcomes for I markets, but (34) has I2 reduced-form elasticities.28 Thus, as in

any structural framework, the derivation of (26) requires the spatial model to be well specified. In

case it is not, additional channels will be included in the residuals and the constant, which would

lead to the violation of the exclusion restriction in equation (27) and the mis-measurement of the

aggregate effects. To explore additional channels previously highlighted by the literature, we extend

our methodology to a broader set of models in the next section.

4 Other Margins of General Equilibrium Effects in Space

We now extend the empirical specification in Section 3.3 for an economy with trade in intermediate

goods as well as a labor supply that depends on migration choices and consumption prices, three

features widely present in quantitative trade and spatial models. Our main result is that the measures

of shock exposure must incorporate i) the upstream and downstream exposure of regional labor

demand to the shock, and ii) the exposure of regional labor supply to shocks in import prices. We

also show how these mechanisms modify the initial conditions and parameters that are sufficient

for computing the reduced-form elasticities to the different measures of shock exposure.

4.1 Environment

Labor Supply with Endogenous Population. Each country c has a continuum N̄c of work-

ers. Individuals have heterogeneous preferences for the amenities of different markets and draw

market-specific amenities {ai(ι)}i∈Ic independently from a Frechet distribution with shape param-

eter ϑ and scale ν̄j. As before, we assume that, conditional on residing in market i, individuals

independently draw a realization of their income potentials (l(ι),u(ι)) from the same Frechet dis-

tribution used in Section 3. Thus, the employment rate is given by ni in (8), and the average log

wage by lnwi in (9). Worker ι chooses in which market i∈Ic to reside based on expected payoffs,

Ui(ι) = ai(ι)%w
φ
i (wφi + bφi )

1−φ
φ /Pi. This implies a location choice similar to that of recent spatial

frameworks (Allen and Arkolakis, 2014; Redding, 2016; Allen et al., 2020b):

28This procedure effectively projects the reduced-form elasticities onto observable variables regulating the strength
of spatial links. It is similar to the common practice in demand estimation of specifying cross-price demand elasticities
in terms of observable variables (Berry, 1994; Berry et al., 1995).
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Ni=
ν̄iP

−ϑ
i wφϑi (wφi +bφi )ϑ

1−φ
φ∑

j∈Ic(i) ν̄jP
−ϑ
j wφϑj (wφj +bφj )ϑ

1−φ
φ

N̄c. (30)

Population in market i (and consequently labor supply) is higher whenever the per-capita real income

in i is higher relative to that of other markets in the country. ϑ controls the sensitivity of a market’s

population to changes in its relative per-capita real income and, as we formally show below, the type

of responses in population to regional shock exposure studied in Section 2.

We further generalize the model by introducing a parameter that controls the sensitivity of the

payoff of not working to local prices: bi= b̄iP
λ
i (Ω({wj}j))1−λ. When λ is higher, the same decline

in import prices has a stronger positive impact on the relative payoff of working and, consequently,

on labor supply. Thus, λ determines the magnitude of the responses of wages and employment to

shocks in the supply of imported goods (such as those that we investigated in Section 2). Note that,

in the limit case of λ=1, labor supply becomes a function of the market’s real wage.

Gravity Trade in Final and Intermediate Goods. We follow the gravity trade framework

with intermediate inputs of Caliendo and Parro (2015) and Costinot and Rodŕıguez-Clare (2014).

We maintain sectoral gravity trade links across markets: sector s of origin i has a representative

competitive firm that produces a differentiated tradable good at a cost of pi,s and faces iceberg trade

costs of τij,s to sell to j. In each sector and destination, the differentiated products of all origins

are combined to produce a composite non-tradable good, using a CES aggregator with elasticity σ.

These sectoral composite goods are inputs for the production in each market of the final consumption

good and the tradable differentiated goods of each sector.

The production function of the final consumption good is a Cobb-Douglas aggregator of the

sectoral non-tradable composite goods with shares ξi,s, so that the final good price is still given by

(7). In addition, we assume that the production function of the differentiated good of sector s is

Cobb-Douglas between labor and an intermediate input aggregator, with spending shares of aLi,s

and aMi,s, respectively. The intermediate input aggregator in sector s, Mi,s, is also a Cobb-Douglas

function of the sectoral non-tradable composite goods, with ξMi,ks denoting the share of intermediate

spending on sector k (ξMi,ks>0 and
∑

kξ
M
i,ks=1). We maintain the assumption of external economies

of scale associated with the market’s employment rate (as regulated by an elasticity ψ).29 From cost

minimization, the production cost in sector s of market i is

pi,s=(wi)
1−ψφ−aMi,s(PM

i,s )a
M
i,s(bi)

ψφ, with PM
i,s =Πk(Pi,k)

ξMi,ks . (31)

29The general specification of the model in Appendix A.3 also features an elasticity of productivity to population.
We set this elasticity to zero in this section because we cannot estimate it given the lack of population responses
to the China shock documented in Section 2.
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Notice that, relative to the model of Section 3, the pass-through of wages to production costs is now

a function of the share of intermediate goods in production. Given the same value of ψφ, a higher

aMi,s will lower the sensitivity of labor demand to the local wage, since input prices also depend on the

labor cost in other markets through input purchases. As we formally show below, this mechanism

generates wage responses to a given shift in excess labor demand that are larger when the share of

intermediate goods in production is higher.

Finally, in Appendix A.2, we define the equilibrium wage vector in terms of an excess labor

demand system: Di(w|τ )=0 for all i. All the remaining proofs and derivations for this section are

in the same Appendix.

4.2 An Extended Reduced-Form Representation

We now extend the empirical specification in Section 3.3, and characterize how the presence of

intermediate goods changes our measures of shock exposure. Consider first the shift in market-level

sales caused by the shock (holding constant all endogenous variables), the ‘‘revenue shock exposure’’

defined as ηRi (τ̂ )≡
∑

s,o,d
∂lnRi
∂lnτod,s

τ̂od,s:

ηRi (τ̂ )=(1−σ)
∑
s

`0
i,s

(
µi,s(τ̂ )+µUi,s(τ̂ )

)
where µUi,s(τ̂ )≡

∑
j,k

bUis,jkµj,k(τ̂ ), b̄
U≡

∞∑
d=1

(
r̄U
)d
, (32)

and r̄U≡ [rUis,jk]is,jk with rUis,jk≡XM
ij,sk/Ri,s denoting the share of revenue in sector s of market i, Ri,s,

coming from its intermediate sales to sector k of market j, XM
ij,sk. Here, µi,s(τ̂ ) is the same shock to

the demand for goods of sector s of market i defined in (17). Since the demand shift for the products

of a sector-market affects its input purchases, it also generates revenue shifts for upstream sectors

and markets that we capture in the series expansion of the upstream matrix of revenue shares, r̄U .

We also consider the shock’s impact on input costs, ηMi,s(τ̂ )≡
∑

k,o,d

∂lnPMi,s
∂lnτod,k

τ̂od,k:

ηMi,s(τ̂ )=µMi,s(τ̂ )+
∑
j,k

bDis,jkµ
M
j,k(τ̂ ) where µMi,s(τ̂ )≡

∑
j,k

x0
ji,kξ

M
i,ksτ̂ji,k, b̄

D≡
∞∑
d=1

(
x̄D
)d
, (33)

and x̄D≡ [xDis,jk]is,jk with xDis,jk≡aMj,kXM
ji,ks/a

M
i,sRi,s denoting the share of input expenditure in sector

s from i that corresponds to input purchases from sector k of market j. This ‘‘input shock exposure’’

has again two terms. µMi,s(τ̂ ) is the direct impact of the shock on the unit input cost of sector s from

market i, which by Shepard’s lemma is simply an average of the shocks across sectors and markets,

weighted by the spending shares on them. In addition, cost shocks in other sectors and markets have

a downstream impact on the cost of production in sector s from i through its intermediate input

purchases, with weights given by the series expansion of the matrix of intermediate cost shares, x̄D.

Our theoretical exposure measures are closely related to measures of upstreamness and down-
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streamness (in levels) for open economies suggested by Fally (2012). They are the open economy

analogs of the Leontief matrices controlling shock percolation across sectors in a closed economy

network model (see Acemoglu et al. (2016b) and Carvalho and Tahbaz-Salehi (2019)), and related

to the forces highlighted in the open economy model of Baqaee and Farhi (2019).

Theorem 1 still holds in this general setting and, as in Section 3.3, the changes in any labor market

outcome Ŷi∈{∆lnwi,∆lnni,∆lnNi} have the following reduced-form representation:

Ŷi=αY +
∑
j

βY,Rij (θ|W0)η̂Rj (τ̂ obs)+
∑
j

βY,Cij (θ|W0)η̂Cj (τ̂ obs)+
∑
j,s

βY,Mij,s (θ|W0)η̂Mj,s(τ̂
obs)+νYi , (34)

where we now define the parameter vector and the matrix of initial conditions as θ≡ (φ,ψ,λ,ϑ,σ)

and W0≡{n0
i ,ω

0
i ,{X0

ij,s}j,s,{ξi,s,aLi,s}s,{ξMi,ks}k,s}i. Under Assumption 1,

E

[
νYi
∑
j

hY,Rij η̂Rj (¨̂τ obs)

]
=E

[
νYi
∑
j

hY,Cij η̂Cj (¨̂τ obs)

]
=E

[
νYi
∑
j,s

hY,Mij,s η̂
M
j,s(

¨̂τ obs)

]
=0 (35)

for the de-meaned shock, ¨̂τ obs≡ τ̂ obs−τ obs, and any real matrices {hY,Rij ,hY,Cij ,{hY,Mij,s }s}j.
Equations (34) and (35) generalize the empirical specification in Section 3.3. As such, (34)–(35)

inherit all the properties outlined in Section 3.3 that allow their use for both estimation and testing.

However, there are three additional implications embedded in (34).

The first term in (34) is the analog for this general model of the reduced-form responses in (26)

for the simpler model of Section 3. Not only trade in intermediate goods requires the measurement

of upstream revenue exposure (i.e.,
∑

s`
0
i,sµ

U
i,s(τ̂ ) in (32)), but it also alters the reduced-form elas-

ticities to revenue shock exposure (i.e., W0 includes final and intermediate spending shares). In

particular, higher intermediate input usage plays a similar role to stronger agglomeration forces

in amplifying reduced-form elasticities by flattening the labor demand curve. We formalize this

intuition in Appendix A.2.5 by showing that under symmetry the labor demand elasticity is instead

κ=(σ−1)(1−ψφ−aM) and wage responses are increasing in κ.

The second term indicates that shocks in the price of imported final goods, η̂Ci (τ̂ obs), also affect

labor market outcomes in this more general framework. This follows from the impact that such

shocks have on both the non-employment payoff (as regulated by λ) and the allocation of individuals

across markets (as regulated by ϑ). Formally, we can write βY,Cij =λβ̃Y,Cλij +ϑβ̃Y,Cϑij . Thus, when λ

and ϑ are higher, the impact of consumption exposure on labor market outcomes is also stronger.

In fact, βY,Cij =0 for the labor supply structure of Section 3 that entails λ=ϑ=0.

The last term captures how outcomes respond to shocks in the cost of imported inputs, η̂Mj,s(τ̂
obs).

Such responses arise from two channels. When input costs fall in a market, the market’s labor

demand increases due to market share gains in all destinations. Moreover, input cost shocks affect

labor supply through changes in the consumption price index across markets.
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Notice that the representation in (34) links our model to the evidence in Section 2. For the same

foreign shock ζ̂F,s of Section 3.2.1, the import expenditure exposure in (5) is a weighted average of the

regional exposure to shocks in the cost of final and intermediate goods.30 Thus, the evidence in Section

2 suggests that the responses of wages and employment to consumption exposure, η̂Ci and η̂Mi,s, are not

strong enough to offset the negative impact caused by revenue losses due to import competition, η̂Ri .

Generality of the Empirical Specification. In Appendix A.3.1, we show that our results hold

for a general class of models encompassing most of the recent quantitative trade and spatial models

reviewed by Costinot and Rodŕıguez-Clare (2014) and Redding and Rossi-Hansberg (2017). We

outline general conditions that yield (34) with the same shift-share measures of exposure {η̂Rj ,η̂Cj ,η̂Mj,s}
that satisfy (35). This characterization follows three steps: (i) specifying the observed and unobserved

trade shocks, (ii) solving for the first-order approximation of log-changes in observable outcomes, and

(iii) defining the reduced-form elasticities as a function of initial conditions and elasticities in the model.

5 Measuring the General Equilibrium Effect of The China

Shock

Our theoretical analysis has established that the general equilibrium impact of trade shocks on regions

is intrinsically related to the reduced-form elasticities of regional outcomes to the shock exposure of

different markets. We now use our characterization of these elasticities in the context of the spatial

model above to empirically investigate how U.S. CZs were affected by the China shock.

5.1 Measuring the China Shock

We offer a structural interpretation of ADH’s measure of the China shock in each sector – that

is, the per-worker growth in Chinese imports by eight developed countries between years t0 and t,

∆M t
China,s–, and back out model-consistent sectoral demand shifts from it. Without loss of generality,

we consider a decomposition of the shift in sectoral demand triggered by the China shock into a

common component and destination-specific components: (1−σ)xt0Chinaj,sτ̂
t
Chinaj,s= ζ̂tChina,s+ε̂

t
Chinaj,s

for all j. Our observed measure of the China shock is the common sectoral component ζ̂tChina,s, which

we back out from ∆M t
China,s under the assumption that the size-weighted average of ε̂tChinaj,s is zero,∑

j

E
t0
j,s∑

j′E
t0
j′,s
ε̂tChinaj,s≈0 for each s. Specifically, we show in Appendix A.4.1 that the sectoral demand

30Formally,
∑
se

0
i,sζ̂F,s∝

∑
k`

0
i,ka

0
i,kµ

M
i,k(ζ̂)+(1−

∑
k`

0
i,ka

0
i,k)ηCi (ζ̂) with ai,k=aMi,k/a

L
i,k.
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shift, ζ̂tChina,s, relates to the ADH shock measure according to

∆M t
China,s=

(∑
jE

t0
j,s

Lt0US,s

)
ζ̂tChina,s+

∑
jX

t0
Chinaj,sΛ

t
j,s

Lt0US,s

, (36)

where Λt
j,s is the destination-sector fixed-effect in a sector-level gravity regression for log-changes

in bilateral trade flows between years t0 and t, and Lt0US,s is the U.S. employment in sector s at t0.31

The structural relationship in (36) indicates that the sectoral shifter used in ADH combines

two components. The first is proportional to the sectoral demand shift associated with shocks in

China’s trade costs, (
∑

jE
t0
j,s/L

t0
US,s)ζ̂

t
China,s. The second is the average across destinations of changes

in sectoral demand,
∑

jX
t0
Chinaj,sΛ

t
j,s/L

t0
US,s, which depends on changes in endogenous and exogenous

variables in the world economy. As illustrated in Panel A of Figure B.2 in Appendix B.2.1, ∆M t
China,s

and (
∑

jE
t0
j,s/L

t0
US,s)ζ̂

t
China,s have a correlation of 0.96 and, thus, China’s productivity growth is the

main driver of the cross-sector variation in Chinese imports by developed countries.32 This suggests

that shocks other than Chinese productivity have little impact on the measure ∆M t
China,s. Indeed,

Panel C of Table B.8 in Appendix B.1 shows that the results in Table 1 are qualitatively similar

when we compute the shift-share exposure variables in (3)–(5) using ζ̂tChina,s instead of ∆M t
China,s.

An important requirement of our specification is that the measure of the China shock, ζ̂tChina,s,

must satisfy Assumption 1. Given initial conditions, shocks to Chinese productivity must be un-

correlated with other unobserved shocks in the world economy. This is reasonable because the

reduction in China’s trade costs has been largely driven by China’s transition to a market-oriented

economy in this period and China’s accession to the WTO in 2001 – for discussions, see Hsieh and

Klenow (2009), Brandt et al. (2012) and Autor et al. (2013). In addition, Assumption 1 also requires

observing the expected value of the shock, so that we can compute the de-meaned exposure measures

used in (35). To maintain our analysis close to ADH, we follow the assumption implicit in their

specification that the shock had the same mean across all 4-digit SIC sectors and the two periods.33

Thus, since all (de-meaned) exposure measures are a function of xt0ij,s
¨̂τ obs,t
ij,s , we compute them by

setting (1−σ)xt0Chinaj,s
¨̂τ obs,t
Chinaj,s=

¨̂
ζtChina,s= ζ̂tChina,s−(1/2S)

∑
s′,t′ ζ̂

t′

China,s′ for all j. This implies that the

de-meaned revenue exposure (without intermediate production) in (28) is Zj =−
∑

s`
0
j,s

¨̂
ζtChina,s.

31We estimate Λtj,s with a gravity equation that also includes origin fixed-effects (but not a constant). We consider
the same set of destinations used by ADH, and weigh observations by trade flows at t0.

32Panel B of Figure B.2 shows that the correlation between ∆M t
China,s and ζ̂tChina,s is lower, because ζ̂tChina,s is

not normalized by U.S. sectoral employment. However, some of the sectors in which China caused the strongest
demand shifts are also those in which per-worker imports from China grew at the fastest pace, including toys, clothing,
and furniture (see Table B.10 in Appendix B.2.1).

33Borusyak et al. (2018) argue that, since the realized growth in Chinese imports was stronger after 2000, this
assumption raises the concern that estimates may capture confounding shocks to manufacturing that were also stronger
in the second period. As a robustness, Appendix B.2.2 reports that our point estimates are similar but less precise
when we implement their preferred specification that allows the shock’s expected value to vary across the two periods.
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5.2 Measuring the Spatial Links

Next, we discuss the specification of the variables in W0 necessary to compute the reduced-form

elasticities for any given θ. Appendix C presents details about the data construction procedure.

We first construct sectoral trade flows between the 722 U.S. CZs and 52 foreign countries. We

use trade data from UN Comtrade assembled by CEPII to measure country-to-country trade flows

for 4-digit SIC sectors. We use the gravity structure of our model to impute domestic sales in each

4-digit SIC sector by combining bilateral trade flows and information on domestic sales in aggregate

sectors obtained from Eora MRIO. Second, we distribute U.S. domestic and international trade flows

across CZs using again the gravity structure of our model. Specifically, we first split U.S. Census

data on imports and exports for each industry-country across CZs using measures of each CZ’s share

in that industry’s national spending and production. We then impute bilateral trade shares across

CZs using a gravity specification estimated with bilateral shipment data from the Commodity Flow

Survey (CFS). Since our baseline model imposes trade balance, we adjust market sizes to balance

trade flows given the bilateral trade shares.34

Moreover, we need the shares of final and intermediate spending for each sector. For U.S. CZs, as

discussed in Section 2.4, we measure final expenditure shares using the Public-use Micro-data from

the Consumer Expenditure Surveys. For foreign countries, we use the final spending shares from

the BEA input-output matrix. We also use the BEA input-output matrix to specify the sectoral

intermediate cost shares for all markets. Finally, we set the share of intermediate inputs in total

cost in each sector and market by assuming that aMj,k = aja
M
k with aMk obtained from the NBER

Manufacturing database, and selecting aj to match observed value-added in each market.35

To specify the numeraire function of non-employment benefits Ω(w), we use the evidence in

Chodorow-Reich and Karabarbounis (2016) that, for annual fluctuations in the U.S., the non-

employment payoff (the average change in bi/Pi across U.S. CZs) has a correlation of 0.64 with

per-capita real income (the average change in wi/Pi across U.S. CZs). To match this correlation,

we set bi/Pi= b̄iΩ(w)/Pi such that Ω(w) is the geometric average of the per-capita income in the

U.S. and the World, Ω(w)=(WUS(w))ω̄(WW(w))1−ω̄ with ω̄=0.62. See Appendix A.4.2 for details.

In all other countries, we simplify our analysis by imposing that labor supply is exogenous.

34Table C.3 in Appendix C.1.2 reports validation tests using the CFS data. Regressions of actual on predicted
trade flows across states and SCTGs yield coefficients close to 1 and R2 of 0.48–0.83.

35We impose that final and intermediate spending shares are the same across countries because we are not aware
of any comprehensive dataset that includes this information for all countries and 4-digit SIC sectors considered in
our empirical application. Figure C.1 in Appendix C.2.2 shows that our calibration procedure almost exactly matches
the observed shares of value added across U.S. CZs and foreign countries.
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5.3 Estimation of Model Parameters and Reduced-Form Elasticities

Table 2 presents the estimates of θ obtained with a GMM estimator based on (34)–(35) using the

pooled sample of 722 U.S. CZs in 1990-2000 and 2000-2007. Because ζ̂tChina,s already accounts for the

trade elasticity, we do not estimate this parameter and set it to five (i.e., σ−1=5), a typical value in the

literature (see Costinot and Rodŕıguez-Clare (2014)).36 In all specifications, we use the same control

set in Table 1, and use the weights suggested by the optimal moment conditions in Appendix A.1.8:

hY,R,tij =∇θβY,Rij (θ|W t0), hY,C,tij =∇θβY,Cij (θ|W t0), hY,M,t
ij,s =∇θβY,Mij,s (θ|W t0). (37)

In Panel A of Table 2, we consider the most general version of the model in Section 4. The first

column reports an estimate of φ equal to 4.4. In our model, this parameter controls the (Marshallian)

labor supply elasticity, which corresponds to φ(1−nt0i ). Given that the median employment rate

across CZs is 0.7, our estimate implies that the typical CZ has a labor supply elasticity of 1.3. This

is similar to the labor supply elasticity implied by the ratio of the estimates of employment to wage

responses to import competition reported in Table 1. Our point estimate of the Marshallian labor

supply elasticity is closer to existing estimates based on market-level variation across regions and

countries, but it is higher than estimates of the Hicksian elasticity based on micro-level responses

of individuals – see Adão et al. (2019) and, for a review, see Chetty et al. (2013b).

The second column reports an estimate of ψ equal to 0.05, which implies strong agglomer-

ation forces: the median elasticity of production costs to regional employment across CZs is

ψ/(1−nt0i )=0.17, a value similar to that implied by the models in Krugman (1980) and Krugman

(1991) given our trade elasticity of five. Our large agglomeration elasticity is consistent with evidence

on regional responses to local demand shocks in the U.S. and Brazil (Kline and Moretti, 2014;

Dix-Carneiro and Kovak, 2017) and regional labor supply shocks in Germany (Peters, 2019), and

is in the upper range of the sectoral scale elasticities at the country-level in Bartelme et al. (2019).

In the third column, the estimate of 0.21 for λ implies that a decrease of 1% in the local price

index is associated with a median increase in labor supply across U.S. CZs of λφ(1−ni)=0.28%. In

line with the discussion in Section 4, such a small estimate of λ follows from the evidence in Table 1

that higher expenditure exposure to the China shock had small, non-significant impacts on wages and

employment across CZs. The fact that we reject λ=1 at usual levels indicates that our estimate is

consistent with the evidence in Chodorow-Reich and Karabarbounis (2016) that the non-employment

payoff in the U.S., bi/Pi, responds to shocks in labor demand and labor supply.

Finally, the fourth column reports a negative and imprecise estimate of the elasticity of location

choice to real wages, ϑ. Since ϑ is proportional to the reduced-form response of population to regional

36This is without loss of generality for the simple model in Section 3 as reduced-form elasticities only depend on
the labor demand elasticity κ≡(σ−1)(1−ψφ). The choice of σ affects the estimate of ψ, but does not alter the model
predictions. In the more general model in Section 4, reduced-form elasticities depend separately on σ and ψ, but
it is hard to separately identify these parameters in practice as they have similar effects on the model’s predictions.
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Table 2: Estimates of the Structural Parameters

φ ψ λ ϑ

Panel A: Model with intermediate production in Section 4

4.39 0.05 0.21 -0.19
(1.28) (0.02) (0.32) (0.27)

Panel B: Model with intermediate production in Section 4

4.16 0.05 0 0
(1.23) (0.01) - -

Panel C: Model without intermediate production in Section 3

2.53 0.35 0 0
(0.37) (0.05) - -

Notes: Panels A and B report GMM estimates of θ implied by the specification in (34) and (35), with the weight matrix in (37). Panel
C reports GMM estimates of θ implied by the specification in (26) and (28). Pooled sample of 1,444 CZs in 1990-2000 and 2000-2007. All
specifications also include the baseline control vector used in Table 1. Standard errors in parentheses are clustered by state.

shock exposure (see Part C of Appendix A.2.4), our estimate of ϑ follows from the evidence in Table 1

that the differential impact of higher exposure to Chinese import competition on regional population

is not statistically different from zero, with a positive point estimate. Our result is consistent with

a growing body of literature documenting that recent shocks in regional labor demand in the U.S.

triggered weak population responses over ten-year horizons – see Molloy et al. (2011), Autor et al.

(2013), Cadena and Kovak (2016), Yagan (2019), and Benguria (2020).

Furthermore, Panels B and C present estimates of two restricted versions of the model. Panel B

reports similar estimates of φ and ψ when we shut down the two additional margins of labor supply

responses introduced in Section 4 (i.e., λ=ϑ=0). This is reasonable since in Panel A we do not reject

that these parameters are zero. Panel C reports estimates of φ and ψ when we consider the simpler

model in Section 3 that ignores intermediate production (i.e., aMi,s=0). In this case, the estimate of φ is

lower, but not statistically different from that in Panel A. However, the higher estimated ψ suggests a

much stronger agglomeration force than that implied by the estimate in Panel A. This is a consequence

of the fact that, as discussed in Section 4, a higher share of intermediates in production yields a

flatter labor demand function for any given value of ψφ. Thus, accounting for intermediate inputs

in production is essential for the model to simultaneously generate reasonable agglomeration forces

and reduced-form elasticities that are consistent with the existing evidence. The direct implication

of this argument is that a Ricardian setting without intermediate inputs and agglomeration forces

(like that used by Galle et al. (2021) and Kim and Vogel (2021)) yields reduced-form elasticities that

are much smaller than our estimates, as we argue in the formal test we provide in the next section.37

Lastly, using the estimated parameters in Panel A of Table 2, we report in Table 3 the reduced-

form elasticities, βij, and the shifts in excess labor demand caused by the China shock, η̂i. We focus

37In Appendix B.2.2, we implement the two procedures described in Section 3.3 that use the integral of our formulas
to show that the first-order approximation of the model’s predictions performs well in our application.
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Table 3: Reduced-form Elasticities and Shifts in Excess Labor Demand for U.S. CZs, 2000-2007

Reduced-form Elasticity Shift in Excess
Direct Indirect Labor Demand
βii βij η̂i

Percentiles of empirical distribution, Full Model of Section 4

10th percentile 0.288 0.000 -0.071
50th percentile 0.314 0.003 -0.027
90th percentile 0.395 0.039 -0.009
99th percentile 1.138 0.494 -0.001

Notes: The table reports the percentiles of the empirical distribution for the 722 U.S. CZs of the reduced-form elasticities in 2000 and the shift
in excess labor demand in 2000-2007 implied by the model with intermediate production in Section 4 for the estimates in Panel A of Table 2.

only on the 722 U.S. CZs in the second period. The first column indicates that, for the median U.S.

CZ, a 1% increase in its excess labor demand triggers an increase in the local wage of 0.31%. There

is substantial heterogeneity in this direct reduced-form elasticity across CZs, as it can be seen from

the value of the 99th percentile, due to their distinct conditions before the shock (e.g., employment

rate, openness and size). The second column shows that the indirect reduced-form elasticities are

positive and, thus, imply a reinforcing spatial propagation of regional demand shocks. The median

indirect elasticity of 0.003 is small, but the combined spatial indirect effect may be relatively large

as there are 721 CZs indirectly affecting each region. A small subset of large or centrally-connected

CZs create much stronger spatial indirect effects: the 99th percentile of the indirect reduced-form

elasticity is 0.49. Lastly, the third column of Table 3 reports the percentiles of the shift in excess

labor demand across CZs. Although the China shock reduced the excess labor demand in most CZs,

the magnitude of this reduction varied substantially across markets.

5.4 Evaluating the Fit of Different Specifications of Spatial Links

Our next goal is to evaluate which specifications of spatial links imply predicted responses to the

China shock that are aligned with those observed across U.S. CZs. To do so, we estimate the fit

coefficient in (29) for different outcomes and specifications.

We start in Table 4 with the predicted responses implied by our most general estimated specification

(Panel A of Table 2).38 Columns (1) and (2) present the estimates for the two labor market outcomes

used in the estimation of the reduced-form elasticities in Section 5.3: the changes in the average

log wage and the log of the employment rate. It is thus reassuring, but not surprising, that we

38Table B.13 in Appendix B.2.2 shows that results are similar for the different versions of the model as in Table
2. We use standard errors clustered by state that impose independence of residuals across states. Because our model’s
predictions take a shift-share form, Panel D in Table B.13 also shows that standard errors are similar when we allow
for arbitrary cross-market correlation in the residuals using the inference procedure in Adão et al. (2019). Because
of the computational burden involved with manipulating the high-dimensional matrices for the full model, we only
implement this inference procedure for the model without intermediate production.
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Table 4: Fit of the Model for Labor Market Outcomes across U.S. CZs

Dependent variable: Change in
Average Log of Share of Manufacturing in
weekly employment working-age employed

log-wage rate population population
(1) (2) (3) (4)

Fit Coef. (ρY ) 1.16 1.07 0.86 0.79
(0.48) (0.20) (0.17) (0.17)

p-value of H0 :ρY =1 73.9% 70.5% 42.6% 21.4%

Notes: Estimation of (29) in the pooled sample of 1,444 CZs in 1990-2000 and 2000-2007. All specifications include the set of baseline
controls in Table 1. The regressor is the predicted impact of the (de-meaned) exposure to the China shock obtained from the model with
intermediate production in Section 4 for the estimates in Panel A of Table 2. Robust standard errors in parentheses are clustered by state.

cannot reject that the fit coefficients are one for these two outcomes. In columns (3) and (4), we

present estimates of the fit coefficient for the predicted responses in the CZ’s sectoral employment

composition (as derived in Appendix A.1.9). Since these outcomes were not used in the estimation

of θ, the fit coefficient of one is an over-identification restriction that we now use for testing our

estimated model.39 Results indicate that our estimated model generates differential responses in

sectoral employment composition that are consistent with those observed following the China shock.

Column (3) shows that the estimated fit coefficient is close to one for the change in the share of the

CZ’s working-age population employed in manufacturing (the main dependent variable in ADH).

Finally, in column (4), we estimate the fit coefficient for the change in the share of manufacturing

in the CZ’s total employment. We again obtain a fit coefficient close to one, which indicates that the

results in column (3) are not only driven by the change in the employment rate that was targeted in

estimation. In addition, Table B.14 in Appendix B.2.2 shows that we obtain fit coefficients close to one

when we implement our test for the responses in sectoral exports and imports of the U.S. (aggregated

across all CZs). Hence, although U.S. trade outcomes were not used in estimation, our model’s

predicted responses for both U.S. exports and imports are consistent with those observed in the data.

Lastly, in Table 5, we investigate the fit of alternative model specifications. We setup as a

benchmark a calibration of the model in Section 4 that is consistent with the long-run predicted

responses in CDP: a multi-sector Ricardian framework with input-output links and no agglomeration

forces (ψ=0), isomorphic employment and location choices (φ=ϑ), and non-employment payoff

proportional to the price index (λ= 1). We set φ= 1.5 so that the median labor supply elasticity

is 0.5 across CZs.40 In this benchmark calibration, the model’s predicted changes in the employment

39Note that there could be many reasons why our model may fail to match these non-targeted moments, as it does
not feature search frictions (e.g. as in Helpman and Itskhoki (2010)), mobility costs and amenity preferences (e.g.
as in Caliendo et al. (2019)), or sector-specific human capital (e.g. as in Burstein et al. (2019); Galle et al. (2021)).

40In CDP, φ and ϑ correspond to β/ν, which is estimated to be 0.2 or 0.5 at the quarterly or annual frequencies,
respectively. They caution readers that this parameter should be higher at longer horizons. So, given that we
implement our model for changes over ten years, we prefer to calibrate this parameter using the estimates for the
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Table 5: Fit of the Model for Labor Market Outcomes across U.S. CZs – Alternative Specifications

(1) (2) (3) (4) (5) (6)

Panel A: Change in log of employment rate

Fit Coef. (ρY ) 4.48 1.93 1.43 1.82 3.70 6.63
(1.42) (0.35) (0.28) (0.33) (0.75) (1.67)

p-value of H0 :ρY =1 1.5% 0.7% 12.1% 1.3% 0.0% 0.1%

Panel B: Change in log of average weekly wage

Fit Coef. (ρY ) 1.89 1.88 2.08 2.07 1.46 2.34
(0.96) (0.84) (0.65) (0.86) (0.64) (0.70)

p-value of H0 :ρY =1 35.2% 29.1% 9.7% 21.2% 47.8% 5.7%

Intermediate Production: Yes Yes Yes Yes Yes No

Parameter Calibration:
φ 1.50 4.40 4.40 4.40 1.50 1.50
ψ 0.00 0.05 0.05 0.00 0.05 0.00
λ 1.00 0.21 1.00 0.21 0.21 1.00
ϑ 1.50 1.50 0.00 0.00 0.00 0.00

Notes: Estimation of (29) in the pooled sample of 1,444 CZs in 1990-2000 and 2000-2007. All specifications include the set of baseline
controls in Table 1. The regressor is the predicted impact of the (de-meaned) exposure to the China shock obtained from the model with
intermediate production in Section 4 in columns (1)-(5), and from the model without intermediate production in Section 3 in column (6). In
each column, we use the set of parameters reported in the bottom of the table. Robust standard errors in parentheses are clustered by state.

rate for U.S. states in 2000-2007 are similar to the long-run predicted changes in CDP: they have

a correlation of 0.45, and almost identical standard deviations of 0.05%. However, column (1) of

Table 5 shows that it implies responses that are substantially smaller than those in the data: the

fit coefficient is 4.5 for the employment rate and 1.9 for the average log wage. While the fit is also

less precise than that for our estimated specifications, one can reject this alternative specification

based on the fit for the employment rate at a 5% significance level.41

The remaining columns of Table 5 investigate why this alternative specification is rejected, while

our estimated model is not. We estimate the fit coefficient by sequentially modifying our baseline

estimates. For the model with intermediate production, we impose that the migration choice elasticity

is 1.5 in column (2), the non-employment payoff is proportional to the price index in column (3),

the agglomeration elasticity is zero in column (4), and the labor supply elasticity parameter is 1.5

in column (5).42 For all these alternative specifications, the fit coefficients are higher than those in

Table 4 and are statistically different from one for either wages or employment at a 10% significance

long-run (Hicksian) elasticity of labor supply in Chetty et al. (2013b).
41One may still be concerned that our results are driven by differences that remain between the specification we

consider and that in CDP, despite the similarity between the predicted responses implied by the two models. To ease
such concerns, Figure B.5 in Appendix B.2.2 depicts a version of the model fit test based directly on the predictions
in CDP (as reported in their replication package). It shows that the slope coefficient between actual and predicted
responses is much larger than one.

42In columns (3)–(6), we set the location choice elasticity to zero, as our negative point estimate is not statistically
distinguishable from zero and a negative value would not be used in the literature.
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level. Column (6) reports the fit coefficient when we restrict the production side of the model to

a Ricardian framework without intermediate goods and agglomeration forces, such as that used in

Galle et al. (2021) and Kim and Vogel (2021). In this case, because labor demand is even more elastic,

the responses are smaller and the fit coefficients are larger. Figure B.4 in Appendix B.2.2 shows that,

for the model without intermediate production to obtain a fit coefficient close to one, much stronger

agglomeration forces must be present.

To summarize, our results identify the roots of the disconnect, documented in Section 2, between

the small differential effects implied by quantitative spatial models in the literature and their much

larger estimated counterparts. Such a disconnect disappears when we consider (i) the combination

of strong agglomeration forces and high sensitivity of employment to wages, and (ii) weak responses

of employment to the price of imported consumption goods.

5.5 The Impact of the China Shock in General Equilibrium

We conclude by presenting the predictions of our estimated specification for the general equilibrium

impact of the China shock on U.S. CZs. We focus our discussion on the aggregate and distributional

effects of the shock on employment rates and real wages, which we summarize in Figure 2.43

We find that the employment effects of the China shock are negative for the vast majority of the

CZs. There is, however, a large spatial dispersion in these adverse effects, with a standard deviation

of employment rate responses equal to 1 p.p. The Southeast and Midwest are the most negatively

affected areas of the U.S. (see Figure B.6 in Appendix B.2.3), containing the ten CZs with the largest

declines in employment rates. This is a consequence of both areas’ higher exposure to the shock,

due to their initial patterns of industry and consumption specialization, and the propagation of

indirect effects across the nearby CZs within these areas. Overall, our estimates imply aggregate

employment losses of approximately 3 million jobs between 1990 and 2007. In contrast, the benchmark

specification that corresponds to the existing quantitative literature in column (1) of Table 5, as

anticipated by the discussion in Section 5.4, implies employment effects that are close to zero with

a much smaller standard deviation of 0.1 p.p., as illustrated by the blue bars in Figure 2.

The right panel of Figure 2 shows that the general equilibrium impact of the shock on real wages

is close to zero for the median CZ, but again there is a large spatial dispersion in these responses,

with regions in the Southeast bearing the largest losses (see Figure B.6 in Appendix B.2.3). The

key reason for this more dampened average effect on real wages is the positive impact of the China

shock on the price index through both the consumption exposure channel in Corollary 3 and the

downstream cost channel in Section 4. Note that our predicted effects on real wages have a similar

average as those implied by the quantitative benchmark calibration in column (1) of Table 5, but

43Figure B.8 in Appendix B.2.3 shows that predicted responses are similar when we consider endogenous fiscal
transfers across CZs.
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Figure 2: Impact of China Shock on U.S. CZs in General Equilibrium

Notes: The histogram on the left displays the response of the employment rate to the China shock for each of the 722 CZs that we
compute with the sum of the predicted effects in 1990-2000 and 2000-2007 implied by the specification in (34). The histogram on the right
displays the analog for the predicted response of the log of the real wage. The light blue bars correspond to the predictions obtained with
parameter estimates in Panel A of Table 2, while the light pink bars correspond to predictions obtained with the benchmark calibration
of the model in column (1) of Table 5.

our estimated model yields much more dispersed real wage responses.

Lastly, Figure B.7 in Appendix B.2.3 evaluates whether the simple exposure measures considered

in Section 2 are able to capture the predictions obtained with our estimates of the general equilibrium

specification in (34). On the vertical axis, we plot the changes in the employment rate between 1990

and 2007 predicted by the specification in (34) with the parameter estimates in Panel A of Table

2. On the horizontal axis, we plot the fitted values implied by a regression of the model-implied

employment changes on a constant, ICt, IEt and GCt (computed with the sectoral shifter defined as

ζ̂tChina,s, instead of ∆M t
China,s). The scatter plot shows that these simple exposure measures generate

a pattern of cross-regional variation in employment responses that is similar to that implied by our

general equilibrium model (the correlation between them is 0.56).

6 Conclusion

The use of cross-regional variation in shock exposure to study how labor markets adjust to economic

shocks has become an important part of the toolkit of researchers in international, macro and urban

economics. This approach has an important shortcoming, though: estimates of the differential

responses of local outcomes to the market’s shock exposure may not fully capture all the adjustment

channels operating in general equilibrium. In this paper, we propose a new theoretical and empirical

methodology for recovering the aggregate impact of economic shocks from their differential impact

across local labor markets. Our methodology relies on the reduced-form characterization of a general
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class of spatial models whose predictions can be expressed in terms of shifts in regional excess labor de-

mand and reduced-form elasticities, direct and indirect, to these shifts. These reduced-form elasticities

are sufficient for aggregating the exposure of different markets in order to compute the shock’s general

equilibrium impact. We then exploit our reduced-form characterization to develop an empirical spec-

ification – a generalization of shift-share empirical strategies – that can be used for either estimating

the parameters of the model’s reduced-form elasticities or testing the model’s differential predictions.

Our methodology fills an important gap in the literature. A class of quantitative spatial models

has emerged, motivated by the critique that empirical strategies exploiting cross-regional variation in

shock exposure can recover the shock’s differential effect but not its aggregate effect. The ultimate goal

of these papers is to use instead their spatial frameworks to quantify the general equilibrium impact of

economic shocks. Despite matching any cross-section of observed regional outcomes with free parame-

ters, a priori these frameworks are not guaranteed to generate predicted responses of regional outcomes

to observed shocks that are consistent with the shock’s actual differential effect across markets – and

indeed we show that they very often do not. We argue in this paper that quantitative spatial models

should be held to the same standard as the empirical strategies that they are supposed to complement,

by generating differential responses to economic shocks that are credibly supported by evidence. This

is important because, as our theoretical results show, the model’s differential predicted responses

depend on the same reduced-form elasticities that determine the model’s predicted aggregate impact.

Our methodology allows the evaluation of the empirical content of spatial general equilibrium

models in terms of their implications for the differential impact of exogenous shocks across markets. It

thus makes progress in achieving the standards set by Kehoe (2005): ‘‘Such evaluations also help make

applied GE analysis a scientific discipline in which there are well-defined puzzles with clear successes

and failures for competing theories.’’ The advantage of our unified theoretical and empirical approach

is also evinced by our findings that spatial models anchored to the reduced-form moments in the data

imply a larger and more dispersed impact of the China shock on U.S. CZs when compared to alternative

specifications whose differential predictions are not consistent with their empirical counterparts.
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A Appendix: Proofs and Additional Results (Not for pub-

lication)

A.1 Proofs for Section 3

A.1.1 Proof of Equation (14)

The definitions of γij in (14) and Di(w|τ ) in (12) immediately imply that

γij =Ii=j(φ−(φ−1)ni)−(φ−1)(1−ni)ω0
j−

1

R0
i

∂Ri(w
0|τ 0)

∂lnwj

where

1

R0
i

∂Ri(w
0|τ 0)

∂lnwj
=
∑
s

∑
d

`0i,sr
0
id,s

[
Id=j(φ−(φ−1)nd)−(φ−1)(1−nd)ω0

j−(σ−1)(1−ψφ)
(
Ii=j−x0

jd,s

)]
.

Thus, using the definitions of κ≡(σ−1)(1−ψφ), φ0
i ≡φ−(φ−1)ni and r0

ij≡
∑

s`
0
i,sr

0
ij,s, we can re-write

this expression as

γij = Ii=jφ0
i +
(
1−φ0

i

)
ω0
j−
∑

s

∑
d`

0
i,sr

0
id,s

[
Id=jφ

0
d+
(
1−φ0

d

)
ω0
j−κ

(
Ii=j−x0

jd,s

)]
= Ii=j

(
φ0
i +κ

)
−
∑

s`
0
i,sr

0
ij,sφ

0
j−κ

∑
s

∑
d`

0
i,sr

0
id,sx

0
jd,s−ω0

j

(
φ0
i−
∑

s

∑
d`

0
i,sr

0
id,sφ

0
d

)
= Ii=j

(
φ0
i +κ

)
−r0

ijφ
0
j−κ

∑
s

∑
d`

0
i,sr

0
id,sx

0
jd,s−ω0

j

(
φ0
i−
∑

dr
0
idφ

0
d

)
which is equivalent to (19) since

∑
dr

0
id=1.

A.1.2 Proof of Theorem 1

We re-define the system in (15) to set the change in the wage of market m to zero. Consider the matrix M̄
obtained by deleting the m-th row from the identity matrix with dimension equal to the number of markets.
If M̄γ̄M̄

′
is non-singular, then we can write

M̄ŵ=
(
M̄γ̄M̄

′
)−1

M̄η̂,

which yields the representation in (21) when we define β̄≡M̄ ′
(M̄γ̄M̄

′
)−1M̄ .

In the rest of the proof, we first show that M̄γ̄M̄
′
is non-singular and then establish that β̄ admits the

series representation in (21). To simplify exposition, we abuse notation by defining

γ̄≡M̄γ̄M̄
′
, ŵ≡M̄ŵ and η̂≡M̄η̂.

This modified system does not include the row associated with the market clearing condition of marketm
and imposes that ŵm=0. To obtain a characterization for the solution of this system, let λ̄ be the diagonal
matrix defined by the vector of λ0

i ≡κ+φi, and γ̃ be the matrix with entries γ̃ij≡ρij/(κ+φi), so that

γ̄= λ̄
(
Ī− ¯̃γ

)
.

Consider the vector {hi}i 6=m�0 that guarantees the diagonal dominance of γ̄ in the initial equilibrium.
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Let h̄ be the diagonal matrix such thathi is the diagonal entry in row i. Thus, the system in (15) is equivalent to

λ̄
(
Ī− ¯̃γ

)(
h̄h̄
−1
)
ŵ = η̂

λ̄
(
h̄− ¯̃γh̄

)
h̄
−1
ŵ = η̂(

λ̄h̄
)(
Ī−
(
h̄
−1 ¯̃γh̄

))
h̄
−1
ŵ = η̂

which implies that

ŵ= h̄
(
Ī− ¯̃̃γ

)−1(
λ̄h̄
)−1
η̂, ¯̃̃γ≡ h̄−1 ¯̃γh̄. (38)

Notice that, for all i, ˜̃γij = γ̃ijhj/hi=ρijhj/(κ+φi)hi.

First, we show that (Ī− ¯̃̃γ) is non-singular, so that we can write the expression in (38). We proceed by

contradiction. Suppose that (Ī− ¯̃̃γ) is singular, so µ=0 is an eigenvalue of (Ī− ¯̃̃γ). Take the eigenvector x

associated with the zero eigenvalue and normalize it such that xi=1 and |xj |≤1. Notice that (Ī− ¯̃̃γ)x=0,
so that the i-row of this system is

1−
∑
j 6=m

˜̃γijxj =0 =⇒ 1− ρii
κ+φi

−
∑
j 6=i,m

ρij
κ+φi

hj
hi
xj =0

Thus, because |xj |≤1 and hj>0 for all j,

(κ+φi−ρii)hi=
∑
j 6=i,m

ρijhjxj≤
∑
j 6=i,m

|ρij ||hj ||xj |≤
∑
j 6=i,m

|ρij ||hj |,

which contradicts (20).

Second, we show that (Ī− ¯̃̃γ)−1 admits the series representation in (21). This is true whenever the

largest eigenvalue of ¯̃̃γ is below one. To show this, we proceed by contradiction. Assume that the largest
eigenvalue µ is weakly greater than one. Take the eigenvector x associated with the largest eigenvalue and
normalize it such that xi=1 and |xj |≤1. Notice that µx= ¯̃̃γx so that the i-row of this system is

1≤µ=
∑
j 6=m

ρij
κ+φi

hj
hi
xj .

Since κ+φi and hi are positive, the same steps used above imply that

(κ+φi−ρii)hi≤
∑
j 6=i,m

|ρij |hj ,

which contradicts the assumption of diagonal dominance. Thus, the largest eigenvalue of ¯̃̃γ is below one,
allowing us to write (Ī− ¯̃̃γ)−1 =

∑∞
d=0(¯̃̃γ)d. Substituting this series expansion into (38) yields

ŵ=
∞∑
d=0

(
h̄
(

¯̃̃γ
)d
h̄
−1
)
λ̄
−1
η̂.

Finally, to establish the result, we now show that h̄(¯̃̃γ)dh̄
−1

=(¯̃γ)d. We proceed by induction. For d=1,
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it is trivial to see that h̄(¯̃̃γ)h̄
−1

= ¯̃γ. Assume that it holds for d, we now show that it also holds for d+1:

h̄
(

¯̃̃γ
)d+1

h̄
−1

= h̄
(

¯̃̃γ
)d ¯̃̃γh̄

−1
= h̄
(

¯̃̃γ
)d(

h̄
−1 ¯̃γh̄

)
h̄
−1

=

(
h̄
(

¯̃̃γ
)d
h̄
−1
)

¯̃γ=(¯̃γ)d+1.

Thus,

ŵ=
∞∑
d=0

(¯̃γ)
d
λ̄
−1
η̂,

which immediately implies the result.

A.1.3 Proof of Corollary 1

The series expansion representation of βij indicates that βij > 0 if γ̃ij > 0 for all i and j. We now show
that γ̃ij > 0 whenever maxo,d |no−nd| is low enough. Since

∑
dr

0
id(φ

0
i −φ0

d) = (φ− 1)
∑

dr
0
id(n

0
d−n0

i ) >
−(φ−1)maxo,d|no−nd|,

γ̃ij>
r0
ijφ

0
j+κ

∑
s

∑
d`

0
i,sr

0
id,sx

0
jd,s−ωj(φ−1)maxo,d|no−nd|
φ0
i +κ

and, thus,

max
o,d
|no−nd|<

r0
ijφ

0
j+κ

∑
s

∑
d`

0
i,sr

0
id,sx

0
jd,s

ωj(φ−1)
⇒ γ̃ij>0.

Since the numerator is positive in our model, there exists maxo,d|no−nd|≥0 such that the condition
above holds for all i and j.

A.1.4 Proof of Corollary 2

We establish this result in two steps.
Step 1. First we show that, if γ̄≡λ0

(
Ī−1ρ′

)
where 1 is a column vector of ones and ρ≡{ρj}j 6=m is

column vector, then γ̄−1 =(λ0)−1
(
Ī+ρ−1

m 1ρ′
)
.

γ̄−1γ̄ = Ī+ρ−1
m 1ρ′−1ρ′−ρ−1

m 1ρ′1ρ′

= Ī+ρ−1
m 1ρ′−1ρ′−

(
ρ−1
m

∑
j 6=mρj

)
1ρ′

= Ī+
(
ρ−1
m (1−

∑
j 6=mρj)−1

)
1ρ′

= Ī

where the second equality follows from ρ′1=
∑

j 6=mρj , and the fourth from
∑

jρj =1 (since
∑

jγij =0 for all
i).

Step 2. We now establish conditions that allow us to write γij =λ0(Ii=j−ρj). Assume that n0
i =n0,

so φ0
i =φ+(1−φ)n0 and we can define λ0≡κ+φ0. We now use the fact that xij,s=xi,s and ξj,s=ξs so that

r0
ij =

∑
sx

0
ij,sξj,sE

0
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j
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sx

0
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0
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0
j∑

j

∑
sx

0
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0
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=
E0
j∑
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0
j

=e0
Wj .

In addition,

κ
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`0i,sr
0
id,sx
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s
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Since n0
i =n0, then

∑
dr

0
id(φ

0
i−φ0

d)=0. This implies that ρ0
ij =e0

Wjφ
0+κχj , which we can use to define

ρj≡(e0
Wjφ

0
j+κχj)/(κ+φ0) and βj≡Ij 6=mρj/ρm.

A.1.5 Proof of Corollary 3

By Shepard’s lemma, the price index expression in (7) implies that

P̂i=
∑
s,o

ξi,sx
0
oi,s(τ̂oi,s+p̂o)= η̂Ci (τ̂ )+

∑
o

x0
oip̂o

where x0
oi≡

∑
sξi,sx

0
oi,s is the share of o in the total spending of i. Thus,

P̂i = η̂Ci (τ̂ )+
∑

ox
0
oi

(
(1−ψφ)ŵo+ψφΩ̂

)
= η̂Ci (τ̂ )+

∑
o

(
x0
oi(1−ψφ)+ψφω0

o

)
ŵo,

= η̂Ci (τ̂ )+
∑

o

(
x0
oi

κ
σ−1 +

(
1− κ

σ−1

)
ω0
o

)
ŵo

where the first expression follows from p̂o in (10), the second from b̂i = Ω̂ =
∑

oω
0
oŵo, and the last from

the definition of κ=(σ−1)(1−ψφ). The combination of this expression and the expression for ŵo in (21)
immediately implies (23).

A.1.6 Proof of Equation (26)

The labor supply equation in (8) with b̂i=
∑

dω
0
dŵd implies that n̂i=φ(1−n0

i )(ŵi−
∑

dω
0
dŵd). Using (21),

we get that

n̂i=φ(1−n0
i )
∑
j

(
βij−

∑
d

ω0
dβdj

)
η̂j , (39)

which immediately implies the second expression in (26) when combined with (25).
The combination of (9), (21), and (39) implies that

∆lnwi=
∑
j

βij η̂j−(1−n0
i )
∑
j

(
βij−

∑
d

ω0
dβdj

)
η̂j ,

and, thus,

∆lnwi=
∑
j

[
n0
iβij+(1−n0

i )
∑
d

ω0
dβdj

]
η̂j .

This immediately implies the first expression in (26) when combined with (25).

A.1.7 Proof of Equation (28)

To establish condition (28) first notice that, by definition,

νwi =(1−σ)
∑

jβ
w
ij(θ|W0)

∑
s`

0
j,s

(∑
dr

0
jd,sτ̂

unbs
jd,s −

∑
o

∑
dr

0
jd,sx

0
od,sτ̂

unbs
od,s

)
−αw

=
∑

s,d,o

[∑
j(1−σ)βwij(θ|W0)`0j,sr

0
jd,s

(
Io=j−x0

od,s

)]
τ̂unbs
od,s −αw.
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Using the definition Zj≡
∑

s`
0
j,s(ẑ

obs
j,s −z̄obs

j,s ), we have that

Zj =(1−σ)
∑

s`
0
j,s

(∑
dr

0
jd,s

(
τ̂obs
jd,s−τobs

)
−
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o
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dr

0
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0
od,s

(
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(1−σ)`0j,sr

0
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(
Io=j−x0

od,s

)](
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)
.

For arbitrary i and j,

E
[
νwi Zj |W0

]
=E

∑
s,d,o
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h
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0
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(
Io=h−x0od,s
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s′,d′,o′

`0j,s′r
0
jd′,s′

(
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and, thus,

E
[
νwi Zj |W

0
]

=
∑
s,d,o,s′,d′,o′

(∑
hβ

w
ih(θ|W0)`0h,sr

0
hd,s

(
Io=h−x0od,s
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E
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(
τ̂obs
o′d′,s′−τ
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− αw
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0
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(
Io′=j−x0o′d′,s′
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E
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τ̂obs
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)
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]
.

Since E
[(
τ̂obs
o′d′,s′−τobs

)
|W0

]
=0,

E
[
νwi Zj |W

0
]

=
∑
s,d,o

∑
s′,d′,o′

(∑
hβ

w
ih(θ|W0)`0h,sr

0
hd,s

(
Io=h−x0od,s
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`0
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(
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Cov

(
τ̂unbsod,s ,τ̂

obs
o′d′,s′ |W

0
)
.

Thus, by the assumption in (27), E
[
νwi Zj |W0

]
= 0 and, therefore, E [νwi Zj ] =E

[
E
[
νwi Zj |W0

]]
= 0.

This immediately establishes that, for any real matrix hwij , E
[
νwi
∑

jh
w
ijZj

]
=
∑

jh
w
ijE[νwi Zj ] = 0. We can

follow the same steps to show that E
[
νni
∑

jh
n
ijZj

]
=0.

A.1.8 Model-Implied Optimal Moment Condition

To simplify exposition without loss of generality, we assume that all variables are demeaned, so that (26)
and (28) can be written in the following vector form:

vi(θ)=Yi−(βi(θ|W ))′Z such that E

vi(θ)
∑
j

hijZj

=0. (40)

Define H i =
[(
hkiZ

)′]dim(θ)

k=1
where hkiZ has dimension dim(vi)×1. Thus, for any hki , the condition

above is equivalent to
E[H ivi(θ)]=0,

which yields the following class of GMM estimators of θ,

θ̂H≡argminθ

[∑
i

H ivi(θ)

]′[∑
i

H ivi(θ)

]
.

Optimal Moment Conditions with Independent Residuals. We follow Chamberlain (1987) to
derive the optimal moment conditions. We start with the assumption that vi are independent across (clusters
of) markets. We show below how the formula changes when we instead assume that the observed shocks are
independent, while allowing residuals to have an arbitrary correlation.

When vi is independent across markets, the usual optimal IV formula in Chamberlain (1987) holds, so
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that the optimal moment condition is

H∗i ≡
(
E
[
vi(θ)vi(θ)′|Z

])−1∇θvi(θ)

where, given (40),
∇θvi(θ)=−∇θβi(θ|W )Z.

The term (E[vi(θ)vi(θ)′|Z])−1 adjusts the weight of each observation to the inverse of the variance of
its residuals. It is the usual adjustment that arises in generalized least squares under heteroskedasticity.
This term is irrelevant under homoskedasticity. For each observation, ∇θvi(θ) attributes a higher weight to
the exposure of the markets whose bilateral reduced-form elasticities are more sensitive to changes in each
parameter.

Intuition for Efficiency Gains. We now illustrate the source of the efficiency gains from the use of the
optimal moment conditions in the context of our model. To fix ideas, we assume that the goal is to estimate
φ when the labor demand elasticity κ is already known. In this case, the efficiency gains arise from the fact
that the reduced-form expression for wage changes in (26) is the model-consistent first-stage specification
for the estimation of φ.

To see this, notice that the labor supply structure in (8)–(9) implies that

n0
i

1−n0
i

∆lnni=Ω̂+φ∆lnwi+v
n
i (41)

where vni ≡−∆lnb̄i and Ω̂ is the change in the numeraire of transfers.
Given that κ is assumed to be known, the reduced-form expression for wage changes in (26) yields the

model-consistent first-stage expression:

∆lnwi=αw+
∑
j

βwij(φ)η̂j+v
w
i . (42)

Notice that if we substitute (42) into (41), then we recover the reduced-form expression for employment
in (26). Thus, equations (41)-(42) imply the same relationship between market-level shock exposure (as
measured by η̂j) and employment and wage changes across markets.

Using the general equilibrium predictions of the model in (41)-(42), the optimal moment condition for
the estimation of φ is

(
E
[
vi(φ)vi(φ)′|Z

])−1∇φvi(φ)=

[
σ2
n σwn

σwn σ2
w

]−1∑
j

[
βwij(φ)+φ∇φβwij(φ)

∇φβwij(φ)

]
η̂j , (43)

where σ2
n and σ2

w denote the variance of vni and vwi respectively and σwn denotes the covariance between vwi
and vni .

We now compare the optimal moment condition implied by the general equilibrium predictions of the
model to the optimal moment condition that a researcher would obtain if she estimates φwith the equilibrium
relationship in (41) but imposes an arbitrary first-stage relationship between the average log-wage in market
i (i.e., the endogenous variable) and that market’s exogenous shock exposure (i.e., the instrumental variable):

∆lnwi=α+βη̂i+ui. (44)

This approach yields a consistent estimator of φ under the same orthogonality conditions introduced
in Section 3.3. However, it yields a less efficient estimator. To see this, we now apply the optimal moment
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condition to (41) and (44) (which is equivalent to the 2SLS estimator of φ when η̂i is the IV):

(
E
[
vi(φ)vi(φ)′|Z

])−1∇φvi(φ)=

[
σ2
n 0
0 σ2

u

]−1[
βη̂i
0

]
=

[
β
σ2
n
η̂i

0

]
∝
[
η̂i
0

]
, (45)

where we assume that the researcher also imposed that the covariance between ui and vi is zero – as typically
done in practice.

Under the assumption that the general equilibrium model is well specified, the fact that (43) and (45)
are different indicates that the arbitrary first-stage assumption leads to a less efficiency estimator. The
difference is that the derivation of (45) does not take into account the general equilibrium structure of
the model, and, thus, ignores two channels through which shocks affect endogenous outcomes in general
equilibrium: (i) information on shocks in other regions that may affect wages and employment in i (i.e., the
arbitrary first-stage ignores spatial indirect effects), and (ii) the impact that the parameter φ has on wage
responses (i.e., the arbitrary first-stage ignores that wage responses depend on φ).

Optimal Moment Conditions with Correlated Residuals. We now also derive the optimal moment
conditions using the results in Borusyak and Hull (2020) that allow for arbitrary cross-market correlation
in vi but assume that the observed shocks are independent from each other. In this case, they show that

H∗≡
(
E
[
v(θ)v(θ)′|W

])−1∇θv(θ).

We then apply this formula to our reduced-form representation of the predictions of general equilibrium
spatial models: using (40),

∇θvi(θ)=−∇θβi(θ|W )Z.

This formula is similar to the one above. The term ∇θvi(θ) is identical in the two formulas. The only
difference is the first term, which now accounts for the potential covariance between the residuals of different
markets. In our model, such a correlation may arise if markets are exposed to similar unobserved shocks
in economic fundamentals – a point recently raised by Adão et al. (2019) in the context of shift-share
specifications. To see this, assume that τ̂unbs

od,s are independently drawn from an arbitrary distribution with

mean zero and variance of σ2
τ . As shown in Appendix A.1.7, the residual can be written in a general form,

vi(θ)=
∑

s,d,oβ
v
i,ods(θ|W )τ̂unbs

od,s where βvi,ods=
∑

j [β
w
ij(θ|W),βnij(θ|W)]′`j,syjd,s(Io=j−xod,s). Thus,

E
[
vi(θ)vj(θ)′|W

]
=σ2

τ

∑
s,d,o

(
βvi,ods(θ|W )

)(
βvj,ods(θ|W )

)′
.

This expression shows that the correlation between the residuals of markets i and j is higher if they have
higher exposure to the same shocks. This is the case if the two markets are similar in terms of employment
shares across sectors and/or within-sector revenue shares across destinations.

Implementation Comments. We conclude with two comments on implementation. First, while it
is trivial to compute ∇θvi(θ) because of our reduced-form characterization in (40), it is much harder to
compute the variance adjustment term as it requires knowledge of the unobserved residuals. For this reason,
it is common to ignore this adjustment term in practice by constructing moment conditions with ∇θvi(θ).
This yields a consistent estimator of θ, but it is possible that implementing the variance correction term
could further improve the estimator’s efficiency. Second, ∇θvi(θ) must be evaluated at the true value of θ.
To simplify the estimator’s implementation, one can adopt an asymptotically equivalent two-step GMM
estimator of θ where, in the first-stage, we obtain a consistent estimator θ̂1 using ∇θvi(θ0) computed with
an arbitrary guess θ0 and, in the second-stage, we estimate θ̂2 using ∇θvi(θ̂1) computed with the first-stage
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estimate θ̂1.

A.1.9 Reduced-form Responses in Sectoral Employment Outcomes

To derive the change in sectoral employment, recall that, in our model, the share of employment in
sector s is equal to the share of revenue in that sector, so that ˆ̀

i,s = R̂i,s−
∑

k `
0
i,kR̂i,k. The definitions

Ri,s≡
∑

jxij,sξj,sEj , rij,s≡xij,sξj,sEj/Ri,s and µi,s(τ̂ )≡
∑

jr
0
ij,s(τ̂ij,s−

∑
ox

0
oj,sτ̂oj,s) imply

R̂i,s=(1−σ)µi,s(τ̂ )+(1−σ)p̂i+(σ−1)
∑
o

∑
j

r0
ij,sx

0
oj,s

p̂o+
∑
j

r0
ij,sÊj .

Thus, since η̂i(τ̂ )≡(1−σ)
∑

k`i,kµi,k(τ̂ ),

ˆ̀
i,s=(1−σ)µi,s(τ̂ )−η̂i(τ̂ )+(σ−1)

∑
o

∑
j

r0
ij,sx

0
oj,s−

∑
k

`0i,k
∑
j

r0
ij,kx

0
oj,k

p̂o+
∑
j

(
r0
ij,s−r0

ij

)
Êj .

Using the fact that p̂o≡(1−ψφ)ŵo+ψφΩ̂, this expression is equivalent to

ˆ̀
i,s=(1−σ)µi,s(τ̂ )−η̂i(τ̂ )+κ

∑
o

∑
j

r0
ij,sx

0
oj,s−

∑
k

`0i,k
∑
j

r0
ij,kx

0
oj,k

ŵo+
∑
j

(
r0
ij,s−r0

ij

)
Êj

and, therefore,
ˆ̀
i,s=(1−σ)µi,s(τ̂ )−η̂i(τ̂ )+κ

∑
o

(
χ0
io,s−χ0

io

)
ŵo+

∑
j

(
r0
ij,s−r0

ij

)
Êj

where χ0
io,s≡

∑
dr

0
id,sx

0
od,s and χ0

io≡
∑

s`
0
i,sχ

0
io,s.

Recall that Ej =Wj =wi(ni)
φ−1
φ Ni% and Êj =φ0

j ŵj+(1−φ0
j )Ω̂. Thus,

ˆ̀
i,s=(1−σ)µi,s(τ̂ )−η̂i(τ̂ )+

∑
j

[(
χ0
ij,s−χ0

ij

)
κ+
(
r0
ij,s−r0

ij

)
φ0
j

]
ŵj+ρ

0
i,sΩ̂

where ρ0
i,s≡−

∑
d(r

0
id,s−r0

id)φ
0
d. Since Ω̂=

∑
jω

0
j ŵj , this expression becomes

ˆ̀
i,s=(1−σ)µi,s(τ̂ )−η̂i(τ̂ )+

∑
j

π0
ij,sŵj (46)

where π0
ij,s ≡

(
χ0
ij,s−χ0

ij

)
κ+

(
r0
ij,s−r0

ij

)
φ0
j +ρ0

i,sω
0
j . Notice that, up to a first-order approximation, the

change in the share of employment in sector s is ∆`i,s=`0i,s
ˆ̀
i,s and share of population employed in sector s

is ∆ni,s=`0i,sn
0
i (

ˆ̀
i,s+n̂i).

A.2 Proofs for Section 4

The equilibrium requires the gross revenue {Ri,s}i,s to solve

Ri,s=
∑
j

(τij,spi,s)
1−σ∑

o(τoj,spo,s)
1−σ

(
ξj,sEj+

∑
k

ξMj,ska
M
j,kRj,k

)
for all (i,s), (47)
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where Ei=Wi=%wφi (wφi +bφi )
1−φ
φ Ni.

The equilibrium can be expressed as a wage vector in terms of an excess labor demand system:
Di(w|τ )=0 for all i, such that

Di(w|τ )≡
∑
s

aLi,sRi,s(w|τ )−Wi(w|τ ). (48)

A.2.1 Proof of Excess Labor Demand in (48)

Step 1. We now implicitly characterize Pj,s(w) from the combination of Pj,s in (7), pi,s in (31), ni in (8),

Ni in (30) with bi= b̄i(Pi)
λ(Ω(w))1−λ. Thus, any {Pj,s}j,s∈{Pj,s(w)}j,s solves

(Pj,s)
1−σ=

∑
i

(τij,s)
1−σ

(
wi

b̄i
(
Πk(Pi,k)

ξi,k
)λ

(Ω(w))1−λ

)φψ(σ−1)[
(wi)

aLi,s
(

Πk(Pi,k)
ξMi,ks
)aMi,s]1−σ

.

Step 2. For any w, take {Pj,s}j,s ∈ {Pj,s(w)}j,s to compute Pi(w|τ ) = Πk(Pi,k)
ξi,k , and PMi,s (w|τ ) =

Πk(Pi,k)
ξMi,ks . We then obtain pi,s(w|τ ) from (31), ni(w|τ ) from (8), Ni(w|τ ) from (30), and

Ej(w|τ )=Wj(w|τ )=wφi

(
wφi +

(
b̄i

(
Πk(Pi,k)

ξi,k
)λ

(Ω(w))1−λ
)φ) 1−φ

φ

Ni(w|τ )%.

Step 3. To define the revenue function, we solve for

Ri,s−
∑
k

∑
j

(τij,spi,s(w|τ ))1−σ∑
o(τoj,spo,s(w|τ ))1−σ ξ

M
j,ska

M
j,kRj,k=

∑
j

(τij,spi,s(w|τ ))1−σ∑
o(τoj,spo,s(w|τ ))1−σ ξj,sEj(w|τ )

This system has a unique solution because, for every (j,k),

∑
s

∑
i

(τij,spi,s(w|τ ))1−σ∑
o(τoj,spo,s(w|τ ))1−σ ξ

M
j,ska

M
j,k=

∑
s

ξMj,ska
M
j,k=aMj,k<1,

so that

[Ri,s(w|τ )]i,s=

∞∑
d=0

(
Ā(w|τ )

)d∑
j

(τij,spi,s(w|τ ))
1−σ∑

o(τoj,spo,s(w|τ ))
1−σ ξj,sEj(w|τ )


i,s

where

Ā(w|τ )≡

[
(τij,spi,s(w|τ ))

1−σ∑
o(τoj,spo,s(w|τ ))

1−σ ξ
M
j,ska

M
j,k

]
is,jk

.

A.2.2 Proof of Equation (32)

In all the remaining proofs of this section, we simplify notation by omitting the superscript 0. The system
in (47) implicitly defines {Ri,s}i,s as a function of τ for any given {pi,s}i,s. We can then use the implicit
function theorem to write

∂lnRi,k
∂lnτod,s

=Is=k
Xid,s

Ri,s
(1−σ)(Ii=o−xod,s)+

∑
k′

∑
j

xij,sξ
M
j,sk′a

M
j,k′Rj,k′

Ri,k

∂lnRj,k′

∂lnτod,s
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which implies that [
∂lnRi,k
∂lnτod,s

]
ik

=(1−σ)
(
Ī+b̄

U
)[

Is=k
Xid,s

Ri,s
(Ii=o−xod,s)

]
ik

where we have used the definition b̄
U ≡

∑∞
d=1

(
r̄U
)d

, where r̄U ≡ [rUis,jk]is,jk with rUis,jk≡XM
ij,sk/Ri,s.

Thus, [∑
s,o,d

∂lnRi,k
∂lnτod,s

τ̂od,s

]
ik

=(1−σ)
(
Ī+b̄

U
)[∑

o,d
Xid,k
Ri,k

(Ii=o−xod,k)τ̂od,k
]
ik

=(1−σ)
(
Ī+b̄

U
)

[µi,k(τ̂ )]ik

=(1−σ)
[
µi,k(τ̂ )+

∑
j,k′b

U
ik,jk′µj,k′(τ̂ )

]
ik

=(1−σ)
[
µi,k(τ̂ )+µUi,k(τ̂ )

]
ik

This immediately implies (32) because η̂Ri (τ̂ )≡
∑

s,o,d
∂lnRi
∂lnτod,s

τ̂od,s=
∑

k`i,k
∑

s,o,d
∂lnRi,k
∂lnτod,s

τ̂od,s.

A.2.3 Proof of Equation (33)

Equations (7) and (31) define {PMi,s }i,s as a function of τ for any given {wi,Li}i from the solution of

PMi,s =Πk

(∑
o

(τoi,k)
1−σ
(
wo
bo

)φψ(σ−1)

w
(1−σ)aLo,s
o

(
PMo,k

)(1−σ)aMo,s

) ξMi,ks
1−σ

.

Using the implicit function theorem, we have that

∂lnPMi,s
∂lnτod,k

=Ii=dξMi,ksxoi,k+
∑
k′

∑
j

ξMi,k′sxji,k′a
M
j,k′

∂lnPMj,k′

∂lnτod,k

which, by defining ḡD≡(Ī+b̄
D

) implies that[
∂lnPMi,s
∂lnτod,k

]
is

= ḡD
[
Ii=dξMi,ksxoi,k

]
is
.

Thus, [η̂Mi,s(τ̂ )]i,s= ḡD[µMi,s(τ̂ )]is=µMi,s(τ̂ )+
∑

j,kb
D
is,jkµ

M
j,k(τ̂ ).

A.2.4 Proof of Equations (34)–(35)

There are four parts to the derivation of equations (34)–(35). The first part is to characterize the matrix
of spatial links, γ̄, and the vector of shifts in excess labor demand, η̂ (as in Sections 3.2.1 and 3.2.2). The
second part is to characterize the reduced-form response of wages to shifts in excess labor demand (as in
Section 3.2.3). The third is the derivation of the reduced-form responses in labor market outcomes to shocks
in bilateral productivity. The last part is the derivation of (34) for observed and unobserved shocks, and the
associated moment conditions in (35) (as in Section 3.3).

Part A: Derivation of the matrix of spatial links, γ̄, and the vector of shifts in excess labor de-
mand, η̂. We first establish that, by totally differentiating the equilibrium conditions, we can write them as

γ̄ŵ= η̂. (49)
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Step 1. We first derive changes in labor market outcomes as a function of ŵ and P̂ . Expression (8)
with bi= b̄iP

λ
i (Ω(w))1−λ implies that n̂i=φ(1−ni)(ŵi−λP̂i−(1−λ)

∑
jωjŵj). So,

n̂=φφ̄
n,w
ŵ+φλφ̄

n,P
P̂ (50)

such that φn,wij ≡(1−ni)(Ii=j−(1−λ)ωj) and φn,pij ≡−(1−ni)Ii=j .
Expression (30) with bi= b̄iP

λ
i (Ω(w))1−λ implies

N̂i = ϑ
∑

j

(
Ii=j− Nj

Nc(i)
Ic(i)=c(j)

)(
ŵj−P̂j+(φ−1)(1−nj)

(
ŵj−λP̂j

))
+ (φ−1)(1−λ)

(
ni−

∑
j∈c(i)

Nj
Nc(j)

nj

)∑
dωdŵd.

Thus,
N̂=ϑφ̄

N,w
ŵ+ϑφ̄

N,P
P̂ , (51)

where Ñ≡
[
Ii=j−Ic(i)=c(j)Nj/Nc(j)

]
i,j

, n̄≡ [niIi=j ]i,j ,

φ̄
N,w≡Ñ

(
Ī+(φ−1)

(
Ī−n̄

))
+(φ−1)(1−λ)Ñnω′, and φ̄

N,P ≡−Ñ
(
Ī+λ(φ−1)

(
Ī−n̄

))
.

Expressions (50) and (51) imply that Ŵi= ŵi+n̂i(φ−1)/φ+N̂i is given by

Ê=Ŵ = φ̄
W,w

ŵ+
(

(φ−1)λφ̄
n,P

+ϑφ̄
N,P
)
P̂ , (52)

where φ̄
W,w≡ Ī+(φ−1)φ̄

n,w
+ϑφ̄

N,w
.

Step 2. We now derive expressions for changes in price indices as a function of wages, and exogenous
shocks. From (31),

P̂Mi,s−
∑
j,k

ξMi,ksxji,ka
M
j,kP̂

M
j,k=µMi,s(τ̂ )+

∑
j,k

ξMi,ksxji,k

(
aLj,kŵj−

ψ

1−nj
n̂j

)

which, by defining x̄DNS×NS≡ [aMj,kξ
M
i,ksxji,k]is,jk, x̄

M
NS×NS≡ [ξMi,ksxji,k]is,jk, ā

L
NS×N ≡ [aLi,kIi=j ]ik,j , v̄nNS×N =

[Ii=j(1−ni)−1]ik,j , implies (
Ī−x̄D

)
P̂
M

=µM (τ̂ )+x̄M
(
āLŵ−ψv̄nn̂

)
and, therefore,

P̂
M

= η̂M (τ̂ )+ḡDx̄M
(
āLŵ−ψv̄nn̂

)
. (53)

From Shepard’s lemma, P̂i=
∑

sξi,s
∑

jxji,s(τ̂ji,s+p̂j,s), which implies that

P̂i=
∑
s

ξi,s
∑
j

xji,s

(
τ̂ji,s+a

L
j,sŵj+a

M
j,sP̂

M
j,s−

ψ

1−nj
n̂j

)

which, by defining x̄CN×NS≡ [ξi,sxji,s]i,js, ā
M
NS×NS≡ [aMj,kIis=jk]is,jk,

P̂ = η̂C(τ̂ )+x̄C
(
āLŵ−ψv̄nn̂

)
+x̄C āM P̂

M
.
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Substituting (53) into this expression,

P̂ =
(
η̂C(τ̂ )+x̄C āM η̂M (τ̂ )

)
+x̄C c̄M

(
āLŵ−ψv̄nn̂

)
,

where c̄M ≡ Ī+āM ḡDx̄M .
By plugging (50) into this expression,

P̂ =
(
η̂C(τ̂ )+x̄C āM η̂M (τ̂ )

)
+x̄C c̄M āLŵ

− ψx̄C c̄M v̄n
(
φφ̄

n,w
ŵ+φλφ̄

n,P
P̂
)

and, therefore,

P̂ =ᾱP,wŵ+ρP
(
η̂C(τ̂ )+x̄C āM η̂M (τ̂ )

)
, (54)

with ᾱP,w≡ρP x̄C c̄M
(
āL−φψv̄nφ̄n,w

)
and ρP ≡

(
Ī+φψλx̄C c̄M v̄nφ̄

n,P
)−1

.

Substituting P̂ in (54) into (50), we have that

n̂=φᾱn,wŵ+φλᾱn,P
(
η̂C(τ̂ )+x̄C āM η̂M (τ̂ )

)
(55)

with ᾱn,w≡ φ̄n,w+λφ̄
n,P
ᾱP,w and ᾱn,P ≡ φ̄n,PρP .

Substituting P̂ in (54) into (51), we have that

N̂=ϑᾱN,wŵ+ϑᾱN,P
(
η̂C(τ̂ )+x̄C āM η̂M (τ̂ )

)
(56)

with ᾱN,w≡ φ̄N,w+φ̄
N,P
ᾱP,w and ᾱN,P ≡ φ̄N,PρP .

Substituting P̂ in (54) into (52), we have that

Ŵ =ᾱW,wŵ+
(
λᾱW,Pλ +ϑᾱW,Pϑ

)(
η̂C(τ̂ )+x̄C āM η̂M (τ̂ )

)
(57)

with ᾱW,w≡ φ̄W,w+
(

(φ−1)λφ̄
n,P

+ϑφ̄
N,P
)
ᾱP,w, ᾱW,Pλ ≡(φ−1)φ̄

n,P
ρP , and ᾱW,Pϑ ≡ φ̄N,PρP .

Finally, we can solve for the change in the input price index using (53):

P̂
M

=ᾱM,wŵ+η̂M (τ̂ )−ψφλᾱM,P
λ

(
η̂C(τ̂ )+x̄C āM η̂M (τ̂ )

)
(58)

where ᾱM,w≡ ḡDx̄M
(
āL−φψv̄nᾱn,w

)
, and ᾱM,P

λ ≡ ḡDx̄M v̄nᾱn,P .

Step 3. We now solve for the change in revenue of sector-market pairs. From (47), by defining
r̄CNS×N ≡ [xij,sξj,sEj/Ri,s]is,j , (

Ī−r̄U
)
R̂=

[∑
d

rid,sx̂id,s

]
is

+r̄CŴ ,

where, from (6),∑
d

rid,sx̂id,s=(1−σ)µi,s(τ̂ )+(1−σ)
∑
d

rid,s(Ii=j−xjd,s)
(
aLj,sŵj+a

M
j,sP̂

M
j,s−

ψ

1−nj
n̂j

)
.
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By defining χ̄NS×NS≡ [Is=k
∑

drid,s(Ii=j−xoj,s)]is,jk and ḡU ≡ Ī+b̄
U

, we can then write

R̂ = (1−σ)ḡUµ(τ̂ )+(1−σ)ḡU χ̄
(
āLŵ−ψv̄nn̂+āM P̂

M
)

+ḡU r̄CŴ . (59)

Step 4. We now characterize the system in (49). The equilibrium definition in (48) implies that
Ŵi=

∑
s`i,sR̂i,s, which, by defining ¯̀

N×NS≡ [`j,sI[i=j]]i,js, and v̄NS×N =[Ii=j ]ik,j , can be written as

Ŵ =¯̀R̂.

Plugging (59) into this expression, we have that(
Ī−¯̀ḡU r̄C

)
Ŵ = (1−σ)¯̀ḡUµ(τ̂ )+(1−σ)¯̀ḡU χ̄

(
āLŵ−ψv̄nn̂+āM P̂

M
)
.

Using (55)–(57),

γ̄wŵ=(1−σ)¯̀ḡUµ(τ̂ )+(1−σ)ᾱMσ P̂
M

+
(
λγ̄Pλ +ϑγ̄Pϑ

)(
η̂C(τ̂ )+x̄C āM η̂M (τ̂ )

)
,

where
γ̄w ≡

(
Ī−¯̀ḡU ȳC

)
ᾱW,w−(1−σ)¯̀ḡU χ̄

(
āL−ψφv̄nᾱn,w

)
,

γ̄Pλ ≡−
(
Ī−¯̀ḡU ȳC

)
ᾱW,Pλ −(1−σ)ψφ¯̀ḡU χ̄v̄nᾱn,P ,

γ̄Pϑ ≡−
(
Ī−¯̀ḡU ȳC

)
ᾱW,Pϑ ,

ᾱMσ ≡ ¯̀ḡU χ̄āM .

Substituting P̂
M

with (58),

γ̄ŵ= η̂R(τ̂ )+(1−σ)ᾱMσ η̂
M (τ̂ )+

(
λᾱPλ +ϑᾱPϑ

)(
η̂C(τ̂ )+x̄C āM η̂M (τ̂ )

)
where

γ̄≡ γ̄w−(1−σ)ᾱMσ ᾱ
M,w (60)

η̂R(τ̂ )≡(1−σ)¯̀ḡUµ(τ̂ ),, ᾱPλ ≡ γ̄Pλ −(1−σ)ψφᾱMσ ᾱ
M,P
λ , ᾱPϑ ≡ γ̄Pϑ .

Thus,
γ̄ŵ= η̂(τ̂ )

with
η̂(τ̂ )≡ η̂R(τ̂ )+

(
λᾱPλ +ϑᾱPϑ

)
η̂C(τ̂ )+

(
(1−σ)ᾱMσ +λᾱMλ +ϑᾱMϑ

)
η̂M (τ̂ ) (61)

ᾱMλ ≡ᾱPλ x̄C āM , and ᾱMϑ ≡ᾱPϑ x̄C āM .

Part B: Derivation of the reduced-form response of wages to shifts in excess labor demand.
We now establish that the system above, γ̄ŵ=η(τ̂ ), yields a reduced-form representation for wage changes,
ŵ = β̄η(τ̂ ), where β̄ has a series expansion representation. We impose the same diagonal dominance
condition: In any equilibrium, there is a vector {hi}i 6=m�0 such that, for all i 6=m,

hiγii>
∑
j 6=i,m

|γij |hj . (62)

The proof now proceeds in the same way as the proof in Section A.1.2. We start by redefining the system
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to set the change in the wage of market m to zero. Using the same matrix M̄ defined in Section A.1.2, we
show that, if M̄γ̄M̄

′
is nonsingular, then ŵ= β̄η(τ̂ ) for β̄≡M̄ ′

(M̄γ̄M̄
′
)−1M̄ . In the rest of the proof, we

first show that β̄ exists and then that it admits a series representation. To simplify exposition, we again
abuse notation by defining

γ̄≡M̄γ̄M̄
′
, ŵ≡M̄ŵ and η̂≡M̄η̂(τ̂ ).

This modified system does not include the row associated with the market clearing condition of marketm
and imposes that ŵm=0. To obtain a characterization for the solution of this system, let λ̄ be the diagonal ma-
trix with the diagonal elements of γ̄: λ̄ s.t. λii=γii and λij =0 for i 6=j. Thus, we can write the system as

γ̄= λ̄
(
Ī− ¯̃γ

)
st ¯̃γ≡ Ī−λ̄−1

γ̄,

which implies that γ̃ii=0 and γ̃ij =−γij/γii. Let h̄ be the diagonal matrix such that hi is the diagonal entry
in row i. Thus, γ̄ŵ=η(τ̂ ) is equivalent to

λ̄
(
Ī− ¯̃γ

)(
h̄h̄
−1
)
ŵ = η̂

λ̄
(
h̄− ¯̃γh̄

)
h̄
−1
ŵ = η̂(

λ̄h̄
)(
Ī−
(
h̄
−1 ¯̃γh̄

))
h̄
−1
ŵ = η̂,

which implies that

ŵ= h̄
(
Ī− ¯̃̃γ

)−1(
λ̄h̄
)−1
η̂, ¯̃̃γ≡ h̄−1 ¯̃γh̄. (63)

Notice that, for all i, ˜̃γii=0 and ˜̃γij =−γijhj/γiihi.
First, we show that (Ī− ¯̃̃γ) is non-singular, so that we can write the expression in (63). We proceed by

contradiction. Suppose that (Ī− ¯̃̃γ) is singular, so µ=0 is an eigenvalue of (Ī− ¯̃̃γ). Take the eigenvector x

associated with the zero eigenvalue and normalize it such that xi=1 and |xj |≤1. Notice that (Ī− ¯̃̃γ)x=0,
so that the i-row of this system is

1+
∑
j 6=i,m

−˜̃γijxj =0 =⇒ 1+
∑
j 6=i,m

γij
γii

hj
hi
xj =0.

Thus,

γiihi=−
∑
j 6=i,m

γijhjxj≤|
∑
j 6=i,m

γijhjxj |≤
∑
j 6=i,m

|γij ||hj ||xj |≤
∑
j 6=i,m

|γij |hj

where the last inequality holds because |xj |≤1 and hj>0. Thus, γiihi≤
∑

j 6=i,m|γij |hj , which contradicts
(62).

Second, we show that (Ī − ¯̃̃γ)−1 admits a series representation. This is true whenever the largest

eigenvalue of ¯̃̃γ is below one. To show this, we proceed by contradiction. Assume that the largest eigenvalue
µ is weakly greater than one. Take the eigenvector x associated with the largest eigenvalue and normalize
it such that xi=1 and |xj |≤1. Notice that µx= ¯̃̃γx so that the i-row of this system is

1≤µ=
∑
j 6=i,m

−γij
γii

hj
hi
xj
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Since γii and hi are positive,

γiihi≤−
∑
j 6=i,m

γijhjxj≤|
∑
j 6=i,m

γijhjxj |≤
∑
j 6=i,m

|γij ||hj ||xj |

Since |xj | ≤ 1 and hj > 0,
∑

j 6=i,m |γij ||hj ||xj | ≤
∑

j 6=i,m |γij |hj . Thus, γiihi ≤
∑

j 6=i,m |γij |hj , which

contradicts (62). Thus, the largest eigenvalue of ¯̃̃γ is below one, allowing us to write (Ī− ¯̃̃γ)−1 =
∑∞

d=0(¯̃̃γ)d.
Substituting this series expansion into (63) yields

ŵ=
∞∑
d=0

(
h̄
(

¯̃̃γ
)d
h̄
−1
)
λ̄
−1
η̂.

Finally, to establish the result, we can follow the same steps in Appendix A.1.2 to show that h̄(¯̃̃γ)dh̄
−1

=
(¯̃γ)d. Thus,

ŵ= β̄η̂=
∞∑
d=0

(¯̃γ)
d
λ̄
−1
η̂,

which immediately implies that

ŵi=
∑
j

βij η̂j(τ̂ ) where βij =
1

γii

(
I[i=j]−

γij
γjj

I[i 6=j]
)

+
∞∑
d=2

γ̃
(d)
ij

γjj
(64)

with γ̃
(d)
ij denoting the i-j entry of (¯̃γ)

d
defined as γ̃ij≡−γij

γii
I[i 6=j; i,j 6=m].

Part C: Reduced-form representation for changes in labor market outcomes. We start by
writing the reduced-form response in wages:

ŵ= β̄
R
η̂R(τ̂ )+β̄

C
η̂C(τ̂ )+β̄

M
η̂M (τ̂ ) (65)

with
β̄
R

= β̄, β̄
C≡ β̄

(
λᾱPλ +ϑᾱPϑ

)
, βM ≡β

(
(1−σ)ᾱMσ +λᾱMλ +ϑᾱMϑ

)
.

The combination of (65) and (55)–(56) implies

n̂= β̄
n,R
η̂R(τ̂ )+β̄

n,C
η̂C(τ̂ )+β̄

n,M
η̂M (τ̂ ) (66)

N̂= β̄
n,R
η̂R(τ̂ )+β̄

n,C
η̂C(τ̂ )+β̄

n,M
η̂M (τ̂ ) (67)

where
β̄
n,R≡φᾱn,wβ̄R, β̄

n,C≡φ
(
ᾱn,wβ̄

C
+λᾱn,P

)
, β̄

n,M ≡φ
(
ᾱn,wβ̄

M
+λᾱn,P x̄C āM

)
β̄
N,R≡ϑᾱN,wβ̄R, β̄

n,C≡ϑ
(
ᾱN,wβ̄

C
+ᾱN,P

)
, β̄

N,M ≡ϑ
(
ᾱN,wβ̄

M
+ᾱN,P x̄C āM

)
Finally, from the expression for ∆lnwi in (9), ∆lnw=ŵ−(1/φ)n̂. By substituting (64) and (66),

∆lnw= β̄
w,R
η̂R(τ̂ )+β̄

w,C
η̂C(τ̂ )+β̄

w,M
η̂M (τ̂ ) (68)

where

β̄
w,R≡ β̄R−(1/φ)β̄

n,R
, β̄

w,C≡ β̄C−(1/φ)β̄
n,C

, β̄
w,M ≡ β̄M−(1/φ)β̄

n,M
.

65



Part D: Empirical specification in (34)–(35). For outcomes ∆lnYi ∈{∆lnni,∆lnNi,∆lnw}, equa-
tions (66)–(68) imply that, up to a first-order approximation,

∆lnY = β̄
Y,R
η̂R(τ̂ )+β̄

Y,C
η̂C(τ̂ )+β̄

Y,M
η̂M (τ̂ ).

By definition, η̂R(τ̂ ), η̂C(τ̂ ) and η̂M (τ̂ ) are linear combinations of τ̂ij,s. Thus, τ̂ = τ̂ obs+τ̂ unbs implies
that

∆lnY =αY +β̄
Y,R
η̂R(τ̂ obs)+β̄

Y,C
η̂C(τ̂ obs)+β̄

Y,M
η̂M (τ̂ obs)+νY

where ν≡ β̄Y,Rη̂R(τ̂ unbs)+β̄
Y,C
η̂C(τ̂ unbs)+β̄

Y,M
η̂M (τ̂ unbs), αY ≡I−1

∑
iE[νi|W0], and νYi ≡νi−αY .

We now establish that, if Cov(τ̂obs
ij,s ,τ̂

unbs
od,k |W

0)=0, then E[νYi η̂
E
j (τ̂ obs−τobs)]=0 for E∈{R,C,M}. The

proof is analogous to that in Appendix A.1.7. First notice that the definitions of β̄
Y,E

and η̂E(τ̂ ) imply that
we can write

νYi =
∑
s,d,o

βY,τi,sdo(θ|W
0)τ̂unbs

od,s −αY , and η̂Ej (τ̂ obs−τobs)=
∑
s,d,o

HE,τ
j,sdo(W

0)
(
τ̂obs
od,s−τobs

)
.

Thus,

E
[
νYi η̂

E
j (τ̂ obs−τobs)|W0

]
=

∑
s,d,o

∑
s′,d′,o′β

Y,τ
i,sdo(θ|W

0)Hτ
j,s′d′o′(W

0)E
[
τ̂unbs
od,s (τ̂obs

od,s−τobs)|W0
]

− αY
∑

s,d,oH
τ
j,sdo(W

0)E
[
τ̂obs
od,s−τobs|W0

]
Note that E[τ̂obs

od,s−τobs|W0]=0 and E[τ̂unbs
od,s (τ̂obs

od,s−τobs)|W0]=0 from Cov(τ̂obs
ij,s ,τ̂

unbs
od,k |W

0)=0. Hence,

E[νYi η̂
E
j (τ̂ obs−τobs)]=E[E[νYi η̂

E
j (τ̂ obs−τobs)|W0]]=0 for any i and j. This immediately implies that (35)

holds for any real matrix hEij .

A.2.5 Extension of Reduced-Form Response in (22) for a Symmetric Economy with
Intermediate Inputs in Production

There are no trade costs, τij,s=τi,s for all j, the input spending shares are the same in all sectors and markets,
aMi,s=aM and ξMi,ks=ξMk . We consider the same labor supply structure in Section 3 where λ=ϑ=0. Thus,

PMi,s =PM =Πk

[∑
o

(τo,kpo)
1−σ

] ξk
1−σ

,

pi=(wi)
1−ψφ−aM (PM)aM b̄ψφi (Ω(w))ψφ.

By defining κ≡(σ−1)(1−ψφ−aM ), these expressions imply that

xij,s=xi,s =
(τi,spi)

1−σ∑
o(τo,spo)

1−σ =
τ1−σi,s w−κi b̄

ψφ(1−σ)
i∑

oτ
1−σ
o,s w−κo b̄

ψφ(1−σ)
o

.

In this case, labor market clearing requires that

Wi = (1−aM )
∑

s

∑
jxi,s

(
ξsWj+

∑
kξ
M
s a

MRj,k
)

Wi =
∑

s

∑
jxi,s

(
(1−aM )ξsWj+a

MξMs
∑

kWj,k

)
Wi =

∑
s

∑
jxi,s

(
(1−aM )ξs+a

MξMs
)
Wj

Wi =
∑

s

∑
jxi,sesWj
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where es≡(1−aM )ξs+a
MξMs is the share of gross spending on sector s (common to all markets i).

Finally, the supply of labor efficiency units is

Wj =wφj

(
wφj +b̄φj (Ω(w))φ

) 1−φ
φ
N̄j%.

The combination of the equilibrium conditions above implies that the equilibrium wage vector solves
Di(w|τ )=0 for all i such that

Di(w|τ )≡
∑
s

∑
j

[
τ1−σ
i,s w−κi b̄

ψφ(1−σ)
i∑

oτ
1−σ
o,s w−κo b̄

(1−σ)ψφ
o

es−Ii=j

]
wφj

(
wφj +b̄φj (Ω(w))φ

) 1−φ
φ
N̄j%.

Given the alternative definition of the labor demand parameter κ, this excess labor demand system is
isomorphic to that in (12) for the model of Section 3 in the special case of τij,s=τi,s and ξj,s=es for all j.
This implies that Corollary 2 holds for this economy, and wage responses are given by (22).

A.2.6 Adding Endogenous Transfers to the Model

We now extend our model to allow for endogenous transfers across markets to finance the non-employment
benefits. We maintain the same assumptions of Section 4 for production and labor supply. In this case,
it is useful to write the location choice in terms of per-capita spending in each market, so that

Ni

Nj
=
P−ϑi (Ei/Ni)

ϑ

P−ϑj (Ej/Nj)
ϑ

and, therefore,

Ni=
(Ei/Pi)

ϑ
1+ϑ∑

j∈Ic(i)(Ej/Pj)
ϑ

1+ϑ

. (69)

We further assume that a fraction $ of non-employment benefits is financed with local taxes and that
the remaining balance is financed with a common national income tax. Hence,

Ei=Wi+Bi−vi(Wi+Bi)−vc(Wi+Bi)

such that, in equilibrium,

vi(Wi+Bi)=$Bi, and vc
∑
i∈Ic

(Wi+Bi)=(1−$)
∑
i∈Ic

Bi.

Using the fact that Wi
Bi

= ni
1−ni , this expression is equivalent to

Ei=Wi+(1−$)

[
1−ni−

∑
j∈Ic(i)(1−nj)(Wj/nj)∑

j∈Ic(i)(Wj/nj)

]
Wi

ni
. (70)

Notice that, as in our baseline specification, Ei=Wi if $= 1. For any $∈ [0,1], equations (8), (69), and
(70) constitute a system of equations that can be locally solved as a function of w and P . Conditional on
these expressions, we can follow exactly the same steps in Appendix A.2.4 to characterize the reduced-form
responses in the model.
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A.3 Proofs of General Version of the Model in Section 4

A.3.1 Environment

Suppose that each country c is populated by a continuum of individuals divided into multiple groups indexed
by g= 1,...,G. Workers of group g in market i receive a wage of wgi for each efficiency unit supplied. As
in the baseline, each market has a competitive representative firm that produces a differentiated tradable
intermediate good in each sector s, whose endogenous production cost is pi,s and iceberg trade cost of selling
in j is τij,s.

44 There is a representative firm that produces a single non-tradable final consumption good in
each market, and sells it at price of Pi.

We now present the three central parts of the model that, up to a first-order approximation, yield
log-linear equilibrium relationships that are sufficient to derive the reduced-form representation for the
model’s predictions.

Labor Supply. Assume that worker preferences and efficiency implicitly define all labor outcomes as
a (local) function of the wage rate and the price of the consumption good across markets. That is, for any
group g in market i, we have the following local representation for one outcome Ygi out of the employment
rate ngi, population Ngi, employment Lgi, spending Egi, wage bill Wgi, or log average wage ∆lnwgi:

Ygi=ΦY
gi({wfj}fj ,{Pj}j).

Notice that the models in Sections 3 and 4 satisfy this general restriction. It allows for (endogenous or
exogenous) transfers across markets (for example, as in Appendix A.2.6). The general representation also
covers a generalized Roy model with arbitrary individual heterogeneity in market-specific efficiency and
preferences (for example, as in Adão (2016)). In addition, it allows for a rich structure of preferences for
leisure and home production (as specified in Appendix B of the old version of our paper, Adao et al. (2020)),
as well as competitive search environments (such as the one described in Appendix A.5).

The first-order approximation for changes in any outcome Ygi is

Ŷgi=
∑
f,j

φY,wgi,fjŵfj+
∑
j

φY,Pgi,j P̂j , (71)

where φY,wgi,fj≡
∂lnΦYgi(w,P )

∂lnwfj
and φY,Pgi,j ≡

∂lnΦYgi(w,P )

∂lnPj
are the labor supply elasticities with respect to wages and

prices, respectively.

Final Consumption Good. Assume that the production function for the final good combines the dif-
ferentiated good from all origins: Cj =FCj ({cij,s}i,s) where cij,s is the quantity of the differentiated good of

sector s from i used to produce the final good in market j. Assume that FCj is continuous, twice differentiable,
increasing in all arguments, strictly quasi-concave, and homogeneous of degree one. Thus, cost minimization
and zero profit imply that

Pj({τoj,kpo,k}o,k)≡ min
{cij,s}i,s

∑
o,k

τoj,kpo,k such that FCj ({cij,s}i,s)=1.

The first-order approximation for changes in the final good price and final spending shares are given by

P̂j =
∑
i,s

xCij,s(τ̂ij,s+p̂i,s), and x̂Cij,s=
∑
o,k

χCij,s,ok(τ̂oj,k+p̂o,k), (72)

44It is straightforward to define markets as groups of sectors by assuming that, for a subset of sectors, τij,s=∞
for all j (including i).

68



where xCij,s ≡
∂lnPj({τoj,kpo,k}o,k)

∂ln(τij,spi,s)
is the share of good s from i in final spending of market j, and χCij,s,ok ≡

∂2lnPj({τoj,kpo,k}o,k)
∂ln(τij,spi,s)∂ln(τoj,kpi,k) is the elasticity of xCij,s to changes in the cost of good k from o. This final good

production structure allows for arbitrary final spending shares and cross-price elasticities in the initial
equilibrium. It is equivalent to allowing individuals to have arbitrary homothetic preferences for the
differentiated products of different sectors and origins.

Differentiated Good. Assume that the production function for the differentiated good of sector s from
market i is subject to external economies of scale and combines labor of different groups and inputs from

different sectors and origins. That is, Qi,s=Ψi,s({ngj ,Ngj}g,j)Fi,s
(
{Lgi,s}g,FMi,s ({Moi,ks}o,k)

)
, where Lgi,s

is the number of efficiency units employed in sector s of market i, Moi,ks is the quantity of the differentiated
good of sector k from o used to produce good s in market i, and Ψi,s({ngj ,Ngj}g,j) is the endogenous
productivity term (but external to the firm) in sector s of market i that depends on employment outcomes
across groups and markets. Assume that Fi,s and FMi,s are continuous, twice differentiable, increasing in all
arguments, strictly quasi-concave, and homogeneous of degree one. This production function allows us to
solve the firm’s cost minimization problem in two stages.

Consider first the cost minimization problem of selecting intermediate inputs:

PMi,s ({τoi,kpo,k}o,k)≡ min
{Moi,ks}o,k

∑
o,k

τoi,kpo,kMoi,ks s.t. FMi,s ({Moi,ks}o,k)=1,

which implies that

P̂Mi,s =
∑
j,k

xMji,ks(τ̂ji,k+p̂j,k), and x̂Mji,ks=
∑
o,h

χMji,ks,oh(τ̂oi,h+p̂o,h), (73)

where xMji,ks=
∂lnPMi,s({τoi,kpo,k}o,k)

∂ln(τji,kpj,k) is the share of spending on sector k from j in the total input spending of

sector s in market i, and χMji,ks,oh≡
∂2lnPMi,s({τoi,kpo,k}o,k)
∂ln(τji,kpj,k)∂ln(τoi,hpo,h) is the elasticity of xMji,ks to changes in the cost of

the good from sector h of market o.
We then solve the firm’s optimal spending on labor and inputs:

ci,s
(
{wgi}g,PMi,s

)
= min
{Lgi,s}g ,Mi,s

∑
g

wgiLgi,s+P
M
i,sMi,s s.t. Fi,s({Lgi,s}g,Mi,s)=1,

which implies that

ĉi,s=
∑
g

aLgi,sŵgi+a
M
i,sP̂

M
i,s , âLgi,s=

∑
g′

εLgi,s,g′ŵg′i+ε
LM
gi,s P̂

M
i,s , and âMi,s=

∑
g

εLMgi,s ŵgi+ε
M
i,sP̂

M
i,s (74)

where aLgi,s≡
∂lnci,s({wgi}g ,PMi,s)

∂lnwgi
and aMi,s =

∂lnci,s({wgi}g ,PMi,s)
∂lnPMi,s

are the shares of labor and inputs on the total

cost of sector s from i, and εLgi,s,g′≡
∂2lnci,s({wgi}g ,PMi,s)

∂lnwgi∂lnwg′i
, εLMgi,s ≡

∂2lnci,s({wgi}g ,PMi,s)
∂lnwgi∂lnPMi,s

and εMi,s≡
∂lnci,s({wgi}g ,PMi,s)

∂lnPMi,s∂lnPMi,s
are the elasticities of labor and input cost shares with respect to changes in wages and input prices.

Expressions in (73)–(74) allow for a flexible structure of production. In the initial equilibrium, each
sector-market pair can have arbitrary spending shares on labor of different groups and intermediate goods
from different sectors and origins. In addition, we flexibly allow for a nested elasticity structure in the labor
and input demand functions. We do not impose parametric restrictions on the cross-price elasticity matrix
for intermediate spending, allowing for different substitution patterns across goods from different sectors
and markets. This structure also yields an arbitrary demand substitution pattern for labor of different
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groups. Importantly, while changes in the unit input cost can differentially affect demand for different labor
groups, the nested production function imposes that the cost of inputs of distinct sectors and origins only
affect factor demand through a single unit input cost index.

Finally, production cost of s in i is pi,s=ci,s({wgi}g,PMi,s )/Ψi,s({ngj ,Ngj}g,j), which implies that

p̂i,s=
∑
g

aLgi,sŵgi+a
M
i,sP̂

M
i,s−

∑
g,j

ψnis,gjn̂gj−
∑
g,j

ψNis,gjN̂gj , (75)

whereψnis,gj≡
∂lnΨi,s({ngj ,Ngj}g,j)

∂lnngj
andψNis,gj≡

∂lnΨi,s({ngj ,Ngj}g,j)
∂lnNgj

. This general agglomeration elasticity matrix

allows for technology diffusion between regions, as in Fujita et al. (1999) and Lucas and Rossi-Hansberg
(2003), and differences across sectors in economies of scale – e.g., Krugman and Venables (1995), Balistreri
et al. (2010), Kucheryavyy et al. (2016). In addition, the cross-market elasticity of labor productivity may
also incorporate congestion forces implied by the re-allocation of other factors of production, like land and
capital (see Appendix B of the old version of our paper, Adao et al. (2020)).

Equilibrium. The equilibrium requires both goods and labor markets to clear. For every sector s and
market i, the vector of gross revenues {Ri,s}i,s must solve

Ri,s=
∑
j

xCij,sEj+
∑
j

xMij,ska
M
j,kRj,k. (76)

For every group g and market i, the vector of wages must guarantee that

Wgi=
∑
s

aLgi,sRi,s. (77)

A.3.2 Reduced-form Representation

The following proposition characterizes the reduced-form representation of the wage change for each group
and market as a function of measures of market-level shock exposure.

Proposition 1. For an arbitrary τ̂ ≡{τ̂ij,s}ijs, the vector of wage change, ŵ≡{ŵgi}gi, solves γ̄ŵ=η(τ̂ ).
Under the diagonal dominance condition in (62), ŵ has a representation of the form:

ŵ= β̄η̂(τ̂ ) such that η̂(τ̂ )= η̂R(τ̂ )+ᾱC η̂C(τ̂ )+ᾱM η̂M (τ̂ ), (78)

where

ηRgi(τ̂ )=
∑
s

`0gi,s(µi,s(τ̂ )+
∑
j,k

bUis,jkµj,k(τ̂ )), ηCi (τ̂ )=
∑
s,o

xCoi,sτ̂oi,s, ηMi,s(τ̂ )=µMi,s(τ̂ )+
∑
j,k

bDis,jkµ
M
j,k(τ̂ )

(79)
such that

µi,s(τ̂ )≡
∑
o,h

∑
j

(rCij,sχ
C
ij,s,oh+

∑
k

rUij,skχ
M
ij,sk,oh)τ̂oj,h and µMi,s(τ̂ )≡

∑
j,k

xMji,ksτ̂ji,k, (80)

b̄
U ≡

∞∑
d=1

(
r̄U
)d

and b̄
D≡

∞∑
d=1

(
x̄D
)d
, (81)

with r̄UNS×NS≡ [xMij,ska
M
j,kRj,k/Ri,s]is,jk, x̄

D
NS×NS≡ [xMji,ksa

M
j,k]is,jk, W

0≡{{xCij,s}j ,{xMij,sk}j,k,{aLgi,s}g}j and
θ≡{χMji,ks,oh,χCji,s,oh,ψnis,gj ,ψNis,gj ,φ

Y,w
gi,fj ,φ

Y,P
gi,j }.
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Appendix A.3.4 contains the proof of this proposition. It generalizes the reduced-form representation in
Section 4 for the model with the non-parametric links in production and labor supply described in Appendix
A.3.1. It maps wage changes to measures of shock exposure that depend on the initial bilateral trade shares
for both final and intermediate consumption, the initial factor spending shares in production, and the
elasticity matrices governing cross-market links in labor supply (φY,wgi,fj and φY,Pgi,j ), productivity (ψnis,gj and

ψNis,gj) and trade demand (χMji,ks,oh and χCji,s,oh). The definitions of consumption and input exposure are

identical to those in Section 4 for arbitrary bilateral (final and intermediate) spending shares, xMji,ks and

xCji,s. However, the definition of revenue exposure needs to be extended to account for the more general
demand for goods: the shock’s impact on the sales of s in i, µi,s(τ̂ ), is now a function of the cross-price
demand elasticities, χCij,s,oh and χMij,sk,oh. With the nested CES demand in Section 4, these elasticities take

the simple form of χCij,s,oh=χMij,sk,oh=(1−σ)(Ii=o−xoj,s)Is=k.
In Appendix A.3.4, we also characterize the reduced-form representation for labor market and price

outcomes. For any Ŷi∈{{ŵgi,n̂gi,N̂gi,Êgi,
ˆlnwgi}g,P̂i,{P̂Mi,s }s}, we show that Ŷi can be written as

Ŷi=
∑
g,j

βY,Rigj (θ|W0)η̂Rgj(τ̂ |θ)+
∑
j

βY,Cij (θ|W0)η̂Cj (τ̂ )+
∑
j,s

βY,Mij,s (θ|W0)η̂Mj,s(τ̂ ). (82)

The steps in Appendix A.2.4 imply that, under Assumption 1,

∆lnYi=αY +
∑
g,j

βY,Rij (θ|W0)η̂Rgj(τ̂
obs)+

∑
j

βY,Cij (θ|W0)η̂Cj (τ̂ obs)+
∑
j,s

βY,Mij,s (θ|W0)η̂Mj,s(τ̂
obs)+νYi (83)

such that, for ¨̂τ obs≡ τ̂ obs−τobs,

E
[
νYi η̂

R
gj(

¨̂τ obs|θ)
]

=E
[
νYi η̂

C
j (¨̂τ obs)

]
=E

[
νYi η̂

M
j,s(

¨̂τ obs)
]

=0 for any i,j,g,s. (84)

A.3.3 Integration

The reduced-form representation in (82) is a first-order approximation for changes in the market-level

outcomes: Ŷi ∈ {{ŵgi,n̂gi,N̂gi,Êgi,
ˆlnwgi}g,P̂i,{P̂Mi,s }s}. It can be integrated to compute exact changes in

these outcomes using the following algorithm.

1. Consider r= 1,...,R repetitions. Let the initial conditions be W0≡{{xCij,s}j ,{xMij,sk}s,j,k,{aLgi,s}g}j ,
and the initial elasticities be θ0≡{χMji,ks,oh,χCji,s,oh,ψnis,gj ,ψNis,gj ,φ

Y,w
gi,fj ,φ

Y,P
gi,j }.

2. Given θr−1 and Wr−1, for τ̂ r= τ̂/R:

(a) Compute Y r
i =Y r−1

i exp(Ŷ r
i ) where Ŷ r

i is given by (82);

(b) Compute pri,s=pr−1
i,s exp(p̂ri,s) where p̂ri,s is given by (75);

(c) Compute Wr ≡ {{xC,r−1
ij,s exp(x̂C,rij,s)}j ,{x

M,r−1
ij,sk exp(x̂M,r

ij,sk)}j,k,{a
L
gi,s exp(âL,rgi,s)}g}j where x̂C,rij,s,

x̂M,r
ij,sk, and âL,ri,s are respectively given by (72), (73) and (74);

(d) Compute θr ≡ {χM,r
ji,ks,oh, χ

C,r
ji,s,oh, ψ

n,r
is,gj , ψ

N,r
is,gj , φ

Y,w,r
gi,fj , φ

Y,P,r
gi,j } using the definitions above and

outcomes in iteration r.

3. Repeat step 2 for each r. The overall change in any outcome is Y ′i /Y
0
i =Y R

i /Y
0
i .
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A.3.4 Proof of Proposition 1

Step 1. We first derive expressions for changes in price indices as a function of wages, and exogenous
shocks. From (73) and (75),

P̂Mi,s =
∑
j,k

xMji,ks

(
τ̂ji,k+

∑
g

aLgj,kŵgj+a
M
j,kP̂

M
j,k−

∑
g,o

ψnjk,gon̂go−
∑
g,o

ψNjk,goN̂go

)

which, by defining x̄DNS×NS≡ [xMji,ksa
M
j,k]is,jk, x̄

M
NS×NS≡ [xMji,ks]is,jk, ā

L
NS×NG≡ [aLgj,kIi=j ]ik,gj , ψ̄

n
NS×NG=

[ψnis,gj ]is,gj , ψ̄
N
NS×NG=[ψNis,gj ]is,gj and µMNS×1≡ [µ̂i,s(τ̂ )]i,s with µ̂i,s(τ̂ )≡

∑
j,kx

M
ji,ksτ̂ji,k, implies

(
Ī−x̄D

)
P̂
M

=µM (τ̂ )+x̄M
(
āLŵ−ψ̄nn̂−ψ̄NN̂

)
and, therefore,

P̂
M

= η̂M (τ̂ )+ḡDx̄M
(
āLŵ−ψ̄nn̂−ψ̄NN̂

)
(85)

for ḡD≡
(
Ī−x̄D

)−1
= Ī+

∑∞
d=1(x̄D)d and ηM (τ̂ ) in (79).

From (72),

P̂i=
∑
j,s

xCji,s

(
τ̂ji,s+

∑
g

aLgj,sŵgj+a
M
j,sP̂

M
j,s−

∑
g,o

ψnjk,gon̂go−
∑
g,o

ψNjk,goN̂go

)

which, by defining x̄CN×NS≡ [xCji,s]i,js and āMNS×NS≡ [aMj,kIis=jk]is,jk,

P̂ = η̂C(τ̂ )+x̄C
(
āLŵ−ψ̄nn̂−ψ̄NN̂

)
+x̄C āM P̂

M

with ηC(τ̂ ) in (79).
Substituting (85) into this expression,

P̂ =
(
η̂C(τ̂ )+x̄C āM η̂M (τ̂ )

)
+x̄C c̄M

(
āLŵ−ψ̄nn̂−ψ̄NN̂

)
, (86)

where c̄M ≡ Ī+āM ḡDx̄M .
Using (71) for outcome Y ,

Ŷ = φ̄
Y,w
ŵ+φ̄

Y,P
P̂

where we define φ̄
Y,w
GN×GN ≡ [φY,wgi,fj ]gi,fj and φ̄

Y,P
GN×N ≡ [φY,Pgi,j ]gi,j .

To obtain an expression for the price index, we now combine this expression with (86) to derive

P̂ = ρ̄P
(
η̂C(τ̂ )+x̄C āM η̂M (τ̂ )

)
+ᾱP,wŵ (87)

where ρ̄P ≡
[
Ī+x̄C c̄M

(
ψ̄
n
φ̄
n,P

+ψ̄
N
φ̄
N,P
)]−1

and ᾱP,w≡ ρ̄P x̄C c̄M
(
āL−ψ̄nφ̄n,w−ψ̄N φ̄N,w

)
.

Using (71) for outcome Y ,

Ŷ =ᾱY,wŵ+ᾱY,C
(
η̂C(τ̂ )+x̄C āM η̂M (τ̂ )

)
(88)

where ᾱY,w≡ φ̄Y,w+φ̄
Y,P
ᾱP,w and ᾱY,C≡ φ̄Y,P ρ̄P .

Together with (85) and (86), equation (88) implies
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P̂
M

= η̂M (τ̂ )−ᾱM,C
(
η̂C(τ̂ )+x̄C āM η̂M (τ̂ )

)
+ᾱM,wŵ, (89)

where ᾱM,C≡ ḡDx̄M
(
ψ̄
n
ᾱn,C+ψ̄

N
ᾱN,C

)
and ᾱM,w≡ ḡDx̄M

(
āL−ψ̄nᾱn,w−ψ̄N ᾱN,w

)
.

Step 2. We now solve for the change in revenue of sector-market pairs. From (76), by defining
r̄CNS×N ≡ [xCij,sEj/Ri,s]is,j and r̄UNS×NS≡ [xMij,ska

M
j,kRj,k/Ri,s]is,jk,

(
Ī−r̄U

)
R̂=

∑
j

rCij,sx̂
C
ij,s+

∑
j,k

rUij,skx̂
M
ij,sk


is

+r̄U âM+r̄CÊ.

Using (72) and (73), this expression becomes(
Ī−r̄U

)
R̂=µ(τ̂ )+χ̄p̂+r̄U âM+r̄CÊ.

where χ̄NS×NS≡ [
∑

j(r
C
ij,sχ

C
ij,s,oh+

∑
kr
U
ij,skχ

M
ji,ks,oh)]is,oh and µ(τ̂ ) defined in (80).

From (74) and (75), we have that

p̂= āLŵ+āM P̂
M−ψ̄nn̂−ψ̄NN̂

âM = ε̄LMŵ+ε̄M P̂
M

where ε̄LMNS×NG≡ [εLMgi,s Ii=j ]is,gj and ε̄M ≡ [εMi,sIis=jk]is,jk.
By defining ḡU ≡ Ī+b̄

U
, the expressions above imply that

R̂= ḡUµ(τ̂ )+ḡU χ̄
(
āLŵ+āM P̂

M−ψ̄nn̂−ψ̄NN̂
)

+ḡU r̄U
(
ε̄LMŵ+ε̄M P̂

M
)

+ḡU r̄CÊ.

Using the expressions for n̂ and N̂ in (88) and Ê in (88),

R̂= ḡUµ(τ̂ )+ᾱR,wŵ+ᾱR,M P̂
M

+ᾱR,C
(
η̂C(τ̂ )+x̄C āM η̂M (τ̂ )

)
(90)

where
ᾱR,w≡ ḡU

(
χ̄āL+r̄U ε̄LM−χ̄(ψ̄

n
ᾱn,w+ψ̄

N
ᾱN,w)+r̄CᾱE,w

)
ᾱR,M ≡ ḡU

(
χ̄āM+r̄U ε̄M

)
ᾱR,C≡ ḡU

(
r̄CᾱE,C−χ̄(ψ̄

n
ᾱn,C+ψ̄

N
ᾱN,C)

)
Step 3. The final step is characterizing the system in (49). From the labor market clearing condition
in (77), Ŵgi=

∑
s`gi,s(â

L
gi,s+R̂i,s). When combined with (74), we get that

Ŵgi=
∑
s

`gi,s

∑
g′

εLgi,s,g′ŵg′i+ε
LM
gi,s P̂

M
i,s +R̂i,s


which, in matrix notation, yields

Ŵ =ᾱε,Lŵ+ᾱε,M P̂
M

+¯̀R̂,

where ᾱε,LNG×NG ≡ {Ii=j
∑

s`gi,sε
L
gi,s,g′ ]gi,g′j is the matrix of cross-group elasticities of labor demand with
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respect to wages, ᾱε,MNG×NS ≡ {Ii=j`gi,sεLMgi,s ]gi,js is the matrix of group elasticities of labor demand with

respect to input cost, and ¯̀
GN×NS≡ [`gi,sI[i=j]]gi,js is the matrix of the share of sector s in employment of

group g in market i.
By applying (88) and (90) into the expression above, we get(
ᾱW,w−ᾱε,L−¯̀ᾱR,w

)
ŵ= η̂R+

(
ᾱε,M+¯̀ᾱR,M

)
P̂
M

+
(
¯̀ᾱR,C−ᾱW,C

)(
η̂C(τ̂ )+x̄C āM η̂M (τ̂ )

)
,

where, by definition, η̂R≡ ¯̀ḡUµ(τ̂ ).
By applying (89) into this expression, we get that

γ̄ŵ= η̂R(τ̂ )+ᾱC η̂C(τ̂ )+ᾱM η̂M (τ̂ ), (91)

where
γ̄≡ᾱW,w−ᾱε,L−¯̀ᾱR,w−

(
ᾱε,M+¯̀ᾱR,M

)
ᾱM,w,

ᾱC≡ ¯̀ᾱR,C−ᾱW,C−
(
ᾱε,M+¯̀ᾱR,M

)
ᾱM,C ,

ᾱM ≡ᾱε,M+¯̀ᾱR,M+ᾱCx̄C āM .

The representation in (78) follows from the same steps in Part B of Appendix A.2.4 under the diagonal
dominance condition in (62).

Step 4. We derive reduced-form expressions for all labor market outcomes Ŷgi∈{n̂gi,N̂gi,Êgi,
ˆlnwgi} using

(88):

Ŷ = β̄
Y,R
η̂R(τ̂ )+β̄

Y,C
η̂C(τ̂ )+β̄

Y,M
η̂M (τ̂ ) (92)

where
β̄
Y,R≡ᾱY,wβ̄, β̄

Y,C≡ᾱY,wβ̄ᾱC+ᾱY,C , β̄
Y,M ≡ᾱY,wβ̄ᾱM+ᾱY,Cx̄C āM .

Using (87),

P̂ = β̄
C,R
η̂R(τ̂ )+β̄

C,C
η̂C(τ̂ )+β̄

C,M
η̂M (τ̂ ), (93)

where
β̄
C,R≡ᾱP,wβ̄, β̄

C,C≡ᾱP,wβ̄ᾱC+ρ̄P , β̄
C,M ≡ᾱP,wβ̄ᾱM+ρ̄P x̄C āM .

A.4 Proofs and Additional Results in Section 5

A.4.1 Proof of Expression (36)

The gravity trade demand Xij,s in (6) and the expression for pi,s in (10) imply that

∆logXt
ij,s=(1−σ)τ̂ tij,s−κŵti,s+Êtj−

̂(∑
o

τ1−σ
oj,s w

−κ
o b̄κ−σ+1

o

)
︸ ︷︷ ︸

≡Λtj,s

.

Up to a first order approximation, the definition of ∆M t
China,s≡

∑
j

∆Xt
Chinaj,s

L
t0
US,s

is equal to

∆M t
China,s =

∑
j

X
t0
Chinaj,s

L
t0
US,s

∆logXt
Chinaj,s

=
∑

j

X
t0
Chinaj,s

L
t0
US,s

(
(1−σ)τ̂ tChinaj,s−κŵtChina,s+Λtj,s

)
.
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By setting the Chinese wage as the numeraire (ŵtChina,s=0) without loss of generality, the expression
above implies that

∆M t
China,s=

∑
j

Et0j,s

Lt0US,s

(
(1−σ)xt0Chinaj,sτ̂

t
Chinaj,s

)
+

∑
jX

t0
Chinaj,sΛ

t
j,s

Lt0US,s

.

The decomposition (1−σ)xt0Chinaj,sτ̂
t
Chinaj,s= ζ̂tChina,s+ε̂

t
Chinaj,s implies that

∆M t
China,s=

(∑
jE

t0
j,s

Lt0US,s

)ζ̂tChina,s+
∑
j

Et0j,s∑
j′E

t0
j′,s

ε̂tChinaj,s

+

∑
jX

t0
Chinaj,sΛ

t
j,s

Lt0US,s

,

which immediately yields expression (36) under the assumption that
∑

j

E
t0
j,s∑

j′E
t0
j′,s
ε̂tChinaj,s≈0.

A.4.2 Specification of Transfer Numeraire

The definition Ω(w)=(WUS(w))ω̄(WW(w))1−ω̄ implies that

ωt0j ≡
∂lnΩ(wt0)

∂lnwj
= ω̄

W t0
j∑

i∈IUS
W t0
i

Ii∈IUS
+(1−ω̄)

W t0
j∑

c

∑
i∈IcW

t0
i

(94)

where W t0
i is the GDP of market i in the initial period t0.

To compute ωt0j , we need to specify ω̄. We do so using the series of the opportunity cost of not working in
Chodorow-Reich and Karabarbounis (2016). In our model, the average change in the payoff of not working
in the U.S. is ẑtUS≡

∑
i∈IUS

Ni
NUS

(b̂i−P̂i). By defining the U.S. price index change as P̂ tUS≡
∑

i∈IUS

Ni
NUS

P̂i,

the fact that b̂ti=Ω̂t yields

ẑtUS = ω̄Ŵ t
US+(1−ω̄)Ŵ t

W−P̂ tUS

=
(
Ŵ t

US−P̂ tUS

)
−(1−ω̄)

(
Ŵ t

US−Ŵ t
W

)
=

(
Ŵ t

US−P̂ tUS

)
−(1−ω̄)

((
Ŵ t

US−P̂ tUS

)
−
(
Ŵ t

W−P̂ tW
)

+
(
P̂ tUS−P̂ tW

))
.

By defining the real income of a country as R̂W
t

c=Ŵ t
c−P̂ tc and the relative price as P̂tc= P̂ tc−P̂ tW, this

expression is equivalent to

ẑtUS =R̂W
t

US−(1−ω̄)
(
R̂W

t

US−R̂W
t

W+P̂tUS

)
.

Thus,

Cov
(
R̂W

t

US,ẑ
t
US

)
=V ar

(
R̂W

t

US

)
−(1−ω̄)Cov

(
R̂W

t

US,R̂W
t

US−R̂W
t

W+P̂tUS

)
and, therefore,

ω̄=1−
V ar

(
R̂W

t

US

)
−Cov

(
R̂W

t

US,ẑ
t
US

)
Cov

(
R̂W

t

US,R̂W
t

US−R̂W
t

W+P̂tUS

) . (95)

We obtain ω̄= 0.62 using expression (95) computed with year-to-year log-changes in every variable
between 1961 and 2012. To measure ẑtUS, we use the series in Chodorow-Reich and Karabarbounis (2016) of
the opportunity cost of employment implied by their separable utility specification at the first quarter of
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each year (available for 1961-2012). We measure all other variables using data from the Penn World Tables

produced with the methodology in Feenstra et al. (2015). Specifically, we measure R̂W
t

c using the annual
series of the real domestic absorption at current PPPs (CDA) divided by population (pop), and P̂ tc using the
annual series of the Price level of CDA (PPP/XR). We compute the world average of the log-change in each
variable as the average log-change in that variable across all countries, weighted by the country’s share in
world GDP in the previous year.

A.5 Adding Frictional Unemployment to Model of Section 3

We now outline an extension of the model in Section 3 featuring frictional unemployment. It yields an
expression for the change in the employment rate in terms of changes inwi/bi with an elasticity that combines
the parameters controlling responses in both the labor force participation and the unemployment rate.

Environment. We consider the same preferences as in our baseline model, with l(ι) and u(ι) denoting ι’s
efficiency units and non-employment income. As in the baseline, individuals draw (l(ι),u(ι)) independently
from a Frechet distribution with shape parameter φ>1 and scale 1. Given the uncertainty in the job search
process, we assume that individuals are risk neutral.

As in our baseline, each sector s of market i has a representative firm that produces a differentiated
good subject to iceberg trade costs. We now assume that production depends on a CES aggregator of the
continuum of non-traded inputs available in the market, ν∈Vi:

Qi,s=

[∫
ν∈Vi

(qi,s(ν))
µ−1
µ dν

] µ
µ−1

, (96)

where µ>1 is the elasticity of substitution between non-traded varieties.
We assume that the economy has a fixed pool of potential producers of the non-traded inputs that

operate in monopolistic competition. In order to produce, firms need to get matched with a worker. If the
owner of the firm does not post a vacancy, she gets an outside option payoff of ν̄i. We consider a competitive
search environment in which firm ν posts a wage offer wi(ν). We analyze a symmetric equilibrium in which
all firms post the same wage (i.e., wi(ν)=wi), and then are randomly matched with a worker in the economy.
Conditional on being matched to individual ι, intermediate producers have a linear production function
such that yi(ν) = l(ι). The matching technology is such that, if Vi vacancies are posted and Np

i workers
search for a job, the number of matches is

Mi=(Vi)
α(Np

i )
1−α

. (97)

Labor Force Participation. We first solve for the share of individuals in market i that look for a job
given an offered wage rate of wi. Consider the case in which individual ι searches for a job. With probability
Mi/N

p
i , she finds a job and has a payoff of (1−vi)wil(ι)/Pi; with probability 1−M/Np

i , she does not find a job
and has a payoff of (1−vi)biu(ι)/Pi. If the same individual ι does not search for a job, she gets a payoff of (1−
vi)biu(ι)/Pi. Thus, the maximization of expected utility implies that the market’s labor force participation is

npi =Pr

[
Mi

Np
i

wil(ι)+

(
1−Mi

Np
i

)
biu(ι)>biu(ι)

]
=Pr[wil(ι)>biu(ι)] ⇒ npi =

wφi

wφi +bφi
. (98)

As in our baseline, the mean efficiency of those searching for jobs is li=%(npi )
− 1
φ .
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Unemployment Rate. Given the cost minimization problem of the representative firm in market i, the
demand for the output of the intermediate producer ν is

qi(ν)=
(pi(ν))−µ∫

ν̃∈Vi(pi(ν̃))1−µdν̃
Ri.

Thus, the profit maximization problem of firm ν yields the typical constant markup expression for the
price of the intermediate good:

p̃i(ν)=
µ

µ−1
wi ∀ν∈Vi.

This implies that the production cost of firms in market i is pi,s≡
[∫
ν∈Vi(p̃i(ν))1−µdν

] 1
1−µ

= µ
µ−1wi(Mi)

1
1−µ .

In equilibrium, the number of successful matches must be equal to the number of employed individuals
(Mi=Li), so

pi,s=
µ

µ−1
wi(Li)

−ψ such that ψ≡ 1

µ−1
. (99)

Finally, the free entry condition implies that the expected profit of posting a vacancy must be equal
to the outside option of not posting it. Given that the probability of filling a vacancy is Mi/Vi and that
the expected efficiency of a match is li, we have that

ν̄i=(p̃i(v)−wi)li
Mi

Vi
=

1

µ−1
wili

(
Np
i

Vi

)1−α
⇒

Np
i

Vi
=

(
(µ−1)ν̄i

wili

) 1
1−α

This expression determines the share of individuals searching for a job that get matched to a producer:

nmi =
Mi

Np
i

=

(
Vi
Np
i

)α
=

(
wili

(µ−1)ν̄i

) α
1−α

=

(
wi%(npi )

− 1
φ

(µ−1)ν̄i

) α
1−α

.

Assuming that the outside option of producers is proportional to the non-employment transfer (ν̄i=νibi),
we derive our main expression for the share of individuals in market i that are employed:

ni=nmi n
p
i =

(
%

(µ−1)νi

wi
bi

) α
1−α
(

(wi/bi)
φ

1+(wi/bi)φ

)(1− α
1−α

1
φ

)
. (100)

Up to a first order approximation, this expression implies that

n̂i= n̂mi +n̂pi =

(
α

1−α
npi +φ(1−npi )

)
(ŵi−b̂i).

The elasticity of the employment rate to the wage rate has two components. As before, it entails the elasticity
of the labor force participation margin, φ(1−npi ). But now it also encompasses the elasticity of the matching
rate, α

1−αn
p
i , which depends on the matching technology parameter α. Whenever α= 0, all individuals

searching for a job get a match and this term disappears.

77



B Appendix: Additional Empirical Results (Not for publi-

cation)

B.1 Adjustment of U.S. Regional Markets to Trade Shocks: Three Styl-
ized Facts

This appendix presents additional empirical results that complement those in Section 2.

Figure B.1: Regional Exposure to the China Shock, 1990-2007

Notes: For each CZ, the left panel reports ICti , the right panel reports GCti , and the bottom panel reports IEti .

Table B.1: Summary Statistics of Outcomes for U.S. CZs

1990-2000 2000-2007 1990-2007
Mean St. Dev. Mean St. Dev. Mean St. Dev.

100 x Change in average weekly log-wage 12.39 4.65 3.84 5.51 16.23 6.47
100 x Change in log of employment rate 1.27 4.23 1.71 5.31 2.98 6.42
ICti 1.01 1.06 2.52 2.54 3.52 3.35
IEti 2.51 0.58 7.39 1.31 9.90 1.62
GCti 1.03 0.88 2.60 1.99 3.64 2.73

Notes: Sample of 722 Commuting Zones.
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Table B.2: Differential Impact of the China Shock on U.S. CZs, Employment Outcomes

Change in the share of working-age population by category

Employed Emp. in Manuf Emp. in Non-Manuf Unemp. Out of labor force
(1) (2) (3) (4) (5)

ICti -0.253*** -0.166*** -0.087** 0.095*** 0.159***
(0.055) (0.047) (0.037) (0.026) (0.039)

GCti -0.482*** -0.210*** -0.272*** 0.186*** 0.297***
(0.109) (0.053) (0.087) (0.046) (0.077)

IEti -0.120 -0.102** -0.018 0.034 0.086
(0.101) (0.043) (0.090) (0.039) (0.075)

R2 0.322 0.550 0.225 0.282 0.293

Notes: Sample of 1,444 Commuting Zones in 1990-2000 and 2000-2007. All specifications include the set of baseline controls in Table 1.
Robust standard errors in parentheses are clustered by state. *** p<0.01, ** p<0.05, * p<0.10

Table B.3: Differential Impact of the China Shock on U.S. CZs, Employment Outcomes II

Change in the share of working-age population by category

Employed Emp. in Manuf Emp. in Non-Manuf Unemp. Out of labor force
(1) (2) (3) (4) (5)

ICti -0.451*** -0.366*** -0.084 0.126*** 0.325***
(0.069) (0.044) (0.077) (0.032) (0.066)

GCti -0.353*** -0.086 -0.267*** 0.123*** 0.230***
(0.091) (0.056) (0.078) (0.038) (0.078)

R2 0.364 0.488 0.389 0.460 0.454

Notes: Sample of 1,444 Commuting Zones in 1990-2000 and 2000-2007. All specifications include the set of baseline controls used in
ADH, and weight the observations by the initial population share. Robust standard errors in parentheses are clustered by state. ***
p<0.01, ** p<0.05, * p<0.10
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Table B.4: Differential Impact of the China Shock on U.S. CZs, Alternative Specifications I

(1) (2) (3) (4) (5)

Panel A: Change in average log weekly wage

ICti -0.471*** -0.368*** -0.475*** -0.383*** -0.383***
(0.127) (0.104) (0.138) (0.113) (0.114)

GCti -0.601*** -0.606*** -0.600***
(0.155) (0.156) (0.174)

IEti 0.023 0.077 0.079
(0.168) (0.164) (0.145)∑

j 6=izijIE
t
j -0.025

(0.310)

R2 0.517 0.526 0.517 0.527 0.527

Panel B: Change in log of employment rate

ICti -0.519*** -0.400*** -0.474*** -0.369*** -0.363***
(0.089) (0.075) (0.095) (0.079) (0.079)

GCti -0.700*** -0.691*** -0.582***
(0.156) (0.155) (0.158)

IEti -0.216 -0.154 -0.106
(0.146) (0.143) (0.140)∑

j 6=izijIE
t
j -0.516*

(0.261)

R2 0.300 0.326 0.302 0.327 0.330

Panel C: Change in log of working-age population

ICti 0.273 0.209 0.180 0.127 0.118
(0.180) (0.159) (0.172) (0.155) (0.152)

GCti 0.372* 0.348 0.191
(0.217) (0.212) (0.204)

IEti 0.449 0.418 0.349
(0.292) (0.294) (0.277)∑

j 6=izijIE
t
j 0.739

(0.469)

R2 0.309 0.310 0.310 0.312 0.313

Notes: Sample of 1,444 Commuting Zones in 1990-2000 and 2000-2007. Spatial indirect effects computed as in Table 1: zij≡D−5
ij /

∑
kD
−5
ik

where Dij is the distance between CZs i and j. All specifications include the set of baseline controls in Table 1. Robust standard errors
in parentheses are clustered by state. *** p<0.01, ** p<0.05, * p<0.10
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Table B.5: Differential Impact of the China Shock on U.S. CZs, Alternative Specifications II

(1) (2) (3) (4) (5) (6)

Panel A: Change in average log weekly wage

ICti -0.383*** -0.383*** -0.357*** -0.426*** -0.104 -0.283*
(0.113) (0.135) (0.107) (0.112) (0.106) (0.158)

GCti -0.606*** -0.606** -0.528*** -0.720*** -0.284*** -0.670***
(0.156) (0.262) (0.125) (0.174) (0.103) (0.187)

IEti 0.077 0.077 0.062 0.070 -0.043 -0.346
(0.164) (0.092) (0.160) (0.164) (0.143) (0.252)

R2 0.527 0.527 0.538 0.563 0.578 0.592

Panel B: Change in log of employment share

ICti -0.369*** -0.369*** -0.352*** -0.365*** -0.159** -0.567***
(0.079) (0.107) (0.076) (0.077) (0.060) (0.141)

GCti -0.691*** -0.691*** -0.641*** -0.717*** -0.449*** -0.792***
(0.155) (0.258) (0.159) (0.153) (0.139) (0.222)

IEti -0.154 -0.154 -0.153 0.070 -0.244** -0.180
(0.143) (0.078) (0.142) (0.164) (0.118) (0.225)

R2 0.327 0.327 0.332 0.395 0.383 0.383

Panel C: Change in log of working-age population

ICti 0.127 0.127 0.014 0.065 0.176 -0.301
(0.155) (0.124) (0.123) (0.145) (0.165) (0.434)

GCti 0.348 0.348 0.040 0.111 0.404* -0.078
(0.212) (0.133) (0.129) (0.223) (0.213) (0.453)

IEti 0.418 0.418 0.194 0.523* 0.397 0.707
(0.294) (0.330) (0.220) (0.284) (0.288) (0.574)

R2 0.312 0.312 0.442 0.442 0.312 0.444

Control set:
Baseline controls Y Y Y Y Y Y
Lagged population growth N N Y N N N
State dummies N N N Y N N
Manuf share x period dummy N N N N Y N

Observations weights:
Population N N N N N Y
No weights Y Y Y Y Y N

Inference:
State clustered Y N Y Y Y Y
Adão et al. (2019) N Y N N N N

Notes: Sample of 1,444 Commuting Zones in 1990-2000 and 2000-2007. Baseline controls defined in Table 1. Lagged population growth
from Greenland et al. (2019): growth of population with 15-34 years old and 35-64 years old in the previous 10-year period. Standard
errors in parentheses. *** p<0.01, ** p<0.05, * p<0.10
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Table B.6: Differential Impact of the China Shock on U.S. CZs, Alternative Spatial Indirect Effects

(1) (2) (3) (4) (5)

Panel A: Change in average log weekly wage

ICti -0.383*** -0.321*** -0.425*** -0.403*** -0.441***
(0.113) (0.110) (0.125) (0.122) (0.129)

GCti -0.606*** -7.647*** -0.457*** -0.956*** -1.623**
(0.156) (2.365) (0.136) (0.297) (0.790)

IEti 0.077 0.111 0.054 0.052 0.014
(0.164) (0.166) (0.165) (0.163) (0.161)

R2 0.527 0.536 0.521 0.523 0.525

Panel B: Change in log of employment share

ICti -0.369*** -0.265*** -0.410*** -0.389*** -0.439***
(0.079) (0.069) (0.086) (0.089) (0.087)

GCti -0.691*** -10.39*** -0.586*** -1.138*** -1.663***
(0.155) (1.464) (0.145) (0.224) (0.508)

IEti -0.154 -0.096 -0.176 -0.181 -0.225
(0.143) (0.129) (0.145) (0.144) (0.137)

R2 0.327 0.370 0.315 0.320 0.319

Panel C: Change in log of working-age population

ICti 0.127 0.071 0.138 0.129 0.163
(0.155) (0.141) (0.160) (0.159) (0.173)

GCti 0.348 5.430 0.388* 0.685 0.789
(0.212) (3.421) (0.230) (0.484) (0.959)

IEti 0.418 0.387 0.423 0.428 0.454
(0.294) (0.303) (0.291) (0.292) (0.293)

R2 0.312 0.314 0.312 0.312 0.311

Spatial Indirect Effect Specification:

Definition of zij
D−5

ij∑
kD
−5
ik

D−1
ij∑

kD
−1
ik

D−8
ij∑

kD
−8
ik

L0
jD
−5
ij∑

kL
0
kD
−5
ik

L0
jStij∑

kL
0
kStik

Notes: Sample of 1,444 Commuting Zones in 1990-2000 and 2000-2007. All specifications include the set of baseline controls in Table 1.
Spatial indirect effects given by GCti ≡

∑
j 6=izijIC

t
j where zij is specified in each column, Dij is the distance between CZs i and j, L0

j
is the population of CZ j in 1990, and Stij is a dummy that equals one if CZs i and j belong to the same state. Robust standard errors
in parentheses are clustered by state. *** p<0.01, ** p<0.05, * p<0.10
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Table B.7: Differential Impact of the China Shock on U.S. CZs, Alternative Spending Shares

(1) (2) (3) (4)

Panel A: Change in average log weekly wage

ICti -0.383*** -0.397*** -0.396*** -0.348***
(0.113) (0.114) (0.112) (0.112)

GCti -0.606*** -0.589*** -0.590*** -0.563***
(0.156) (0.154) (0.155) (0.156)

IEti 0.077
(0.164)

IEIti 0.110 0.101 -0.548
(0.107) (0.140) (0.452)

IEF ti 0.267 0.246 0.239
(0.757) (0.755) (0.754)

R2 0.527 0.530 0.532 0.532

Panel B: Change in log of employment share

ICti -0.369*** -0.395*** -0.393*** -0.344***
(0.079) (0.081) (0.078) (0.073)

GCti -0.691*** -0.681*** -0.680*** -0.652***
(0.155) (0.151) (0.151) (0.147)

IEti -0.154
(0.143)

IEIti -0.003 -0.014 -0.804**
(0.091) (0.111) (0.389)

IEF ti 0.175 0.174 0.182
(0.489) (0.487) (0.484)

R2 0.327 0.329 0.329 0.332

Panel C: Change in log of working-age population

ICti 0.127 0.122 0.157 0.188
(0.155) (0.149) (0.149) (0.157)

GCti 0.348 0.326 0.334 0.348
(0.212) (0.211) (0.212) (0.218)

IEti 0.418
(0.294)

IEIti 0.307* 0.195 0.041
(0.181) (0.205) (0.844)

IEF ti 0.291 0.272 0.267
(0.722) (0.718) (0.713)

R2 0.312 0.315 0.314 0.313
Construction of IEIti :

Drop final spending N Y Y Y
Drop own industry spending N N Y N
Use Leontief IO shares N N N Y

Notes: Sample of 1,444 Commuting Zones in 1990-2000 and 2000-2007. All specifications include the set of baseline controls in Table 1.
Col. (1) is the baseline specification in which IEti ≡

∑
se
t0
i,s∆M

t
China,s, where et0i,s is the share of gross spending in sector s (as defined in

Section 2.2). In cols. (2)-(4), IEF ti ≡
∑
sef

t0
i,s∆M

t
China,s is the exposure to the shock in final import expenditure, where ef t0i,s is the share

of household spending on sector s in CZ i constructed from the Consumer Expenditure Survey (as described in Appendix C.2.1). In col.

(2), IEIti ≡
∑
sei

t0
i,s∆M

t
China,s is the exposure to the shock in intermediate import expenditure, where eit0i,s≡

∑
kξ
M,t0
sk at0k `

t0
i,k/

∑
ka
t0
k `

t0
i,k

is the share of intermediate spending on sector s in CZ i. In col. (3), we compute IEIti using eit0i,s≡
∑
k 6=sξ

M,t0
sk at0k `

t0
i,k/

∑
k 6=sa

t0
k `

t0
i,k that

ignores the own industry input spending. In col. (4), IEIti ≡
∑
seiL

t0
i,s∆M

t
China,s where eiLt0i,s≡

∑
kξ
L,t0
sk at0k `

t0
i,k/

∑
s,kξ

L,t0
sk at0k `

t0
i,k is the

share of total intermediate spending on sector s in CZ i, with ξL,t0sk defined as the Leontief input spending shares from Acemoglu et al.
(2016a). Robust standard errors in parentheses are clustered by state. *** p<0.01, ** p<0.05, * p<0.1083



Table B.8: Differential Impact of the China Shock on U.S. CZs, Alternative Sectoral Shifters

Change in average Change in log of Change in log of
weekly log-wage employment rate working-age population
(1) (2) (3) (4) (5) (6)

Panel A: China exporter-sector gravity fixed-effect

ICti -0.177** -0.094 -0.267*** -0.157*** 0.115 0.064
(0.083) (0.081) (0.064) (0.052) (0.113) (0.110)

GCti -0.455*** -0.490*** 0.022
(0.134) (0.126) (0.159)

IEti -0.270 -0.557*** 0.586
(0.248) (0.202) (0.566)

R2 0.506 0.513 0.281 0.298 0.308 0.308

Panel B: NTR gap

ICti -0.466*** -0.256*** -0.393*** -0.195*** 0.0252 -0.0281
(0.073) (0.040) (0.045) (0.034) (0.087) (0.079)

GCti -0.351*** -0.355*** -0.0392
(0.092) (0.084) (0.098)

IEti -0.0749 -0.013 0.324**
(0.120) (0.103) (0.134)

R2 0.570 0.584 0.360 0.388 0.307 0.309

Panel C: Sectoral demand shift, ζ̂tChina,s

ICti -0.857*** -0.463*** -0.894*** -0.536*** 0.161 0.049
(0.186) (0.143) (0.128) (0.118) (0.284) (0.199)

GCti -1.022*** -0.920*** 0.292
(0.232) (0.203) (0.376)

IEti -0.353 -0.065 0.167
(0.216) (0.175) (0.553)

R2 0.524 0.536 0.311 0.330 0.307 0.308

Notes: Sample of 1,444 Commuting Zones in 1990-2000 and 2000-2007. All specifications include the set of baseline controls in Table 1. Each
panel presents estimates of regression (2) with different exposure measures. All panels use the same exposure measures as in (3)-(5), but built

with an alternative definition of the sectoral shifter ∆Mt
China,s. In panel A, the shifter is Γ̂tChina,sM

t0
China,s/L

t0
US,s, where Γ̂tChina,s is the

sector-origin fixed-effect for China obtained from the estimation for the periods 1991-2000 and 2000-2007 of ∆logXt
ij,s=Λtj,s+Γti,s+εtij,s in

the same sample of high-income countries used to compute the ADH IV, plus U.S. and China;Mt0
China,s is the initial level of imports in sector

s of the eight high-income countries used to compute the ADH IV; and Lt0US,s is the initial level of U.S. employment in sector s. In Panel B,

the shfiter is 100 times the average NTR Gap in sector s obtained from the replication package of Pierce and Schott (2016b). In panel C, the

shifter is ζ̂tChina,s defined in Section 5.1. Robust standard errors in parentheses are clustered by state. *** p<0.01, ** p<0.05, * p<0.10
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Table B.9: Differential Impact of the China Shock on U.S. CZs, Migration Outcomes

Change in the log of

Population In-migration Out-migration Net migration
(1) (2) (3) (4)

ICti 0.127 0.152 0.063 -0.090
(0.155) (0.184) (0.184) (0.114)

GCti 0.348 0.052 0.077 0.025
(0.212) (0.325) (0.340) (0.113)

IEti 0.418 0.670 0.515 -0.155
(0.294) (0.410) (0.351) (0.155)

R2 0.312 0.885 0.817 0.116

Notes: Sample of 1,444 Commuting Zones in 1990-2000 and 2000-2007. All specifications include the set of baseline controls in Table 1.
Robust standard errors in parentheses are clustered by state. *** p<0.01, ** p<0.05, * p<0.10
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B.2 Measuring the General Equilibrium Effect of The China Shock

B.2.1 Measuring the China Shock

Figure B.2: Measures of the China Shock across Sectors, 1991-2007

Notes: The graph on the left plots the per-worker growth in Chinese imports by the eight developed countries used in ADH (∆Mt
China,s)

against its component associated with China’s productivity growth (
∑
jE

t0
j,sζ̂

t
China,s/L

t0
US,s) across 4-digit SIC manufacturing sectors.

The graph on the right plots ∆Mt
China,s agaist the sectoral demand shift implied by the China shock (ζ̂tChina,s) across 4-digit SIC

manufacturing sectors. All variables are computed over the entire period between 1991 and 2007. The red line is the best linear fit.

Table B.10: Sectors with the Highest and Lowest Exposure to the China Shock

Sectors most affected by the China shock Sectors least affected by the China shock

Rubber and plastics footwear Tobacco stemming and redrying
Games, toys, and children’s vehicles Malt
Housefurnishings, n.e.c. Primary copper
Cement, hydraulic Industrial gases
Waterproof outerwear Vegetable oil mills
Bags: plastics, laminated, and coated Ordinance and accessories
Printing trades machinery Soybean oil mills
Cut stone and stone products Logging
Girls’ and children’s outerwear Cane sugar refining
Men’s and boys’ shirts Cottonseed oil mills

Notes: The table reports the sectors with the highest (left column) and lowest (right column) values of the shift in demand caused by

China’s productivity growth as measured by ζ̂tChina,s with equation (36) between 1991 and 2007.
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B.2.2 Estimation: Robustness and Additional Results

Evaluating the First-Order Approximation. In this appendix, we implement the two procedures
described in the end of Section 3.3 to evaluate the quality of the first-order approximation for the model’s
predicted impact of the China shock. They apply the integration algorithm in Appendix A.3.3 to the
context of the China shock, where ζ̂tChina,s is the observed trade shock. We focus on the simple model in
Section 3 because of the heavy computation burden involved with manipulating, in each integration step,
the high-dimensional matrices in the formulas for the model with intermediate inputs that characterize
responses in labor market outcomes and bilateral trade flows in all region-sector pairs.

We start by comparing the first-order approximation and the non-linear solution for the model’s pre-
dictions (given the estimates in Panel C of Table 2). Specifically, we define the integral of our reduced-form
formulas with R partitions of the shock as

ŶM
i (ζ̂

t|θ,W0,R)≡
R∑
r=1

∑
j

βYij (θ|Wr−1)
∑
s

`r−1
j,s

(
ζ̂tChina,s/R

)
,

where Wr=H(ζ̂
t
/R|θ,Wr−1) defines the law of motion for the endogenous variables in W0 following the

shifts in sectoral demand caused by Chinese cost shocks, ζ̂tChina,s/R. When R is large enough, this algorithm
converges to the exact solution for the model’s predicted impact of the China shock.

Figure B.3 reports the predicted changes in the employment rate that we obtain with different partitions
R. The top left panel shows that the first-order approximation yields predictions that are similar to the
ones implied by the integration algorithm with R=5. The correlation between them is close to one. Notice
however that the first-order approximation slightly over-predicts the impact of the shock. This is because
it fails to capture that employment in more affected sectors falls along the path to the new equilibrium,
attenuating the shift in labor demand caused by the same sectoral demand shock ζ̂tChina,s/R. The remaining
panels show that there is very little gain in accuracy from using more than five partitions of the shock.

We then implement the second procedure, which consists of estimating θ with the exact solution for
the predicted impact of the observed shock, instead of the first-order approximation in (26). Specifically,
we estimate θ with the same moment conditions in (28), but we use the following specification for changes
in outcome Y (that is, log average wage or log employment rate):

Ŷi=αY +
R∑
r=1

∑
j

βYij (θ|Wr−1)
∑
s

`r−1
j,s

(
ζ̂tChina,s/R

)
+νYi , (B.1)

where we now rely on the integral of our formulas to obtain the predicted impact of the shock for any given
value of θ. Relative to the structural residual in (26), νYi in the specification above does not include the
higher-order terms of the Taylor expansion of the model’s predicted response to the China shock. Thus,
whenever these higher-order terms are not important, we should obtain similar estimates for θ with either
(26) or (B.1).

We implement this alternative estimation procedure using five partitions of the shock. We obtain
estimates of φ̂= 2.16 and ψ̂ = 0.43, with standard errors of 0.33 and 0.06 respectively. These estimates
are not statistically different at usual significance levels from those reported in Panel C of Table 2 that
we obtained using the model’s first-order approximation in (26). This reflects the fact that the first-order
approximation performs well in this context, as illustrated by Figure B.3.
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Figure B.3: Impact of the China Shock on the Employment Rate in General Equilibrium, Integral
of First-Order Approximation

Notes: Each dot is the predicted change in the employment rate of each of the 722 CZs in 2000-2007 that we compute using the integration

algorithm in Appendix A.3.3 for R partitions of the shift in sectoral demand caused by the China shock, ζ̂tChina,s. Predictions computed

for the simple model of Section 3 with parameters in Panel C of Table 2.

Alternative Specification of Sectoral Shifters. In this appendix, we consider an alternative
specification of the sectoral demand shifters. In our baseline estimates, consistent with the implicit
assumption embedded in the ADH specification, we demean the shifters using the average shock across all
sectors over the two periods (1990-2000 and 2000-2007). As discussed in Section 5.1, this approach may
capture period-specific unobserved shocks whose exposure is similar to that of the China shock. Instead we
now implement an alternative specification that is robust to such a concern by relying on the period-specific

mean of the sectoral shifters; that is, we set
¨̂
ζtChina,s= ζ̂tChina,s−(1/S)

∑
s′ ζ̂

t
China,s′ for each of the two periods

t. We estimate this alternative specification while setting λ=ϑ=0, because of the weak evidence in favor of
these channels in Section 2 and their estimates close to zero in Section 5.3.

Table B.11 reports the point estimates of φ and ψ that we obtain with this alternative specification. For
both versions of the model, compared to our baseline estimates in Table 2, we obtain similar point estimates
for the two parameters, but much higher standard errors. This imprecision is a consequence of the fact that
this alternative specification yields less precise estimates of the impact of the China shock across CZs. This
is particularly severe for wage responses, which has a larger impact on our estimates of ψ. See Borusyak et
al. (2018) for a detailed analysis of how alternative assumptions about the shock’s distribution affect the
estimates in ADH.

Table B.12 reports our estimates of the fit coefficient obtained from the specification in (29) with the
alternative definition of the demeaned sectoral demand shifters. Reassuringly, we obtain point estimates
close to one for all outcomes and specifications. Note however that the fit coefficient for the wage responses
in column (1) is imprecise, which implies that we cannot reject a wide range of fit coefficients. This follows
again from the fact that this alternative shifter definition leads to imprecise estimates of the impact of the
China shock on wages across CZs.
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Table B.11: Estimates of the Structural Parameters, Alternative Shifter Specification

φ ψ

Panel A: Model without intermediates in Section 3

3.74 0.19
(0.75) (0.04)

Panel B: Model with intermediates in Section 4

5.73 0.05
(2.28) (0.05)

Notes: Panels A reports GMM estimates of θ implied by the specification in (26) and (28), where we define the (de-meaned) observed

shock as
¨̂
ζtChina,s= ζ̂tChina,s−(1/S)

∑
s′ ζ̂

t
China,s′ for each t. Panel B reports GMM estimates implied by the specification in (34) and (35),

using the same (de-meaned) observed shock as in Panel A. Pooled sample of 1,444 CZs in 1990-2000 and 2000-2007. All specifications
also include the baseline control vector used in Table 1, and impose that λ=ϑ=0. Standard errors in parentheses are clustered by state.

Table B.12: Fit of the Model for Labor Market Outcomes across U.S. CZs, Alternative Shifter
Specification

Dependent variable: Change in
Average Log of Share of Manufacturing in
weekly employment working-age employed

log-wage rate population population
(1) (2) (3) (4)

Panel A: Model without intermediates in Section 3 (estimates of Panel A of Table B.11)

Fit Coef. (ρY ) 1.22 1.02 1.26 1.12
(0.46) (0.16) (0.15) (0.17)

p-value of H0 :ρY =1 64.1% 91.5% 08.6% 49.1%

Panel B: Model with intermediates in Section 3 (estimates of Panel B of Table B.11)

Fit Coef. (ρY ) 0.98 0.98 1.16 1.11
(0.79) (0.15) (0.19) (0.19)

p-value of H0 :ρY =1 97.5% 87.4% 39.0% 55.1%

Notes: Estimation of (29) in the pooled sample of 1,444 CZs in 1990-2000 and 2000-2007. All specifications include the set of baseline
controls in Table 1. The regressor is the predicted impact of the exposure to the alternative shifter specification considered in Table B.11,
obtained from the model without intermediate production in Section 3 in Panel A, and from the model with intermediate production
in Section 4 in Panel B. Each panel uses parameter estimates indicated in the panel’s label, while setting λ= ϑ= 0. Standard errors in
parentheses are clustered by state.
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Additional Model Fit Results. In Panels A–C of Table B.13, we report the fit coefficient
estimated with (29) when we consider the alternative model specifications in Panels A–C of Table
2. We cannot reject a fit coefficient of one for all specifications and outcomes. Panel D implements
our test for the same specification in Panel C, but uses instead the alternative inference procedure
for shift-share specifications in Adão et al. (2019) that is robust to any pattern of spatial correlation
in residuals. We obtain similar standard errors for all outcomes.

In Table B.14, we implement a version of our test for log-changes in exports and imports
aggregated for the entire U.S. at the 4-digit sector level (EXPUS,s ≡

∑
i∈IUS

∑
j /∈IUS

Xij,s and
IMPUS,s ≡

∑
i∈IUS

∑
j /∈IUS

Xji,s, respectively). That is, we regress the observed changes in U.S.
exports and U.S. imports on their analogs predicted by our estimated model in response to the
China shock across sectors. Following the same steps in Section 3.3, one can show that the fit
coefficient must be equal to one under the null that the model is well-specified and the observed shock
is exogenous. Again, because of the computational burden, we implement this test for the model
without intermediate production in Section 3, using the parameter estimates reported in Panel C of
Table 2. Reassuringly, we cannot reject a fit coefficient of one for sectoral responses in both exports
and imports of the U.S. (aggregated for all CZs). This indicates that our model predicts responses
in sectoral trade outcomes for the U.S. that are consistent with those observed in the data.

In Figure B.4, we investigate how the values of the parameters φ and κ affect the fit coefficient of
the model without intermediate production in Section 3. We report the fit coefficients for wages (left
panel) and employment (center panel) given different values of (φ,κ), as well as the values (φ,κ) not
rejected by the joint test that these fit coefficients are equal to one (right panel). For low values of φ,
the predicted responses in employment are too small (fit coefficient is above one), and those for wages
are too large (fit coefficient is below one). The right panel shows that we reject any value of φ below
one and thus a median labor supply elasticity below 0.3. For high values of κ, the predicted responses
in both wages and employment become too small (fit coefficients are much higher than one). We reject
values of κ above 1.8 and, therefore, values of ψφ below 0.64 (for a trade elasticity of five). Thus, given
any value of φ, the test rejects the predicted responses implied by a multi-sector Ricardian production
framework without agglomeration and intermediate production (in which ψ=0 and κ=σ−1).

Finally, Figure B.5 implements a version of the model fit test based directly on the predictions
in CDP (as reported in their replication package). It shows that the slope coefficient between actual
and predicted responses across U.S. states is much larger than one.
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Table B.13: Fit of the Model for Labor Market Outcomes across U.S. CZs, Alternative Specifications

Dependent variable: Change in
Average Log of Share of Manufacturing in
weekly employment working-age employed

log-wage rate population population
(1) (2) (3) (4)

Panel A: Model with intermediates in Section 3 (estimates of Panel A of Table 2)

Fit Coef. (ρY ) 1.16 1.07 0.86 0.79
(0.48) (0.20) (0.17) (0.17)

p-value of H0 :ρY =1 73.9% 70.5% 42.6% 21.4%

Panel B: Model with intermediates in Section 3 (estimates of Panel B of Table 2)

Fit Coef. (ρY ) 1.11 1.10 0.80 0.71
(0.48) (0.22) (0.17) (0.17)

p-value of H0 :ρY =1 82.6% 65.1% 22.7% 08.0%

Panel C: Model without intermediates in Section 3 (estimates of Panel C of Table 2)

Fit Coef. (ρY ) 0.97 0.90 0.95 0.82
(0.25) (0.15) (0.11) (0.13)

p-value of H0 :ρY =1 91.5% 51.1% 63.9% 16.0%

Panel D: Model without intermediates in Section 3 (estimates of Panel C of Table 2)

Fit Coef. (ρY ) 0.97 0.90 0.95 0.82
(0.19) (0.20) (0.10) (0.14)

p-value of H0 :ρY =1 88.7% 61.2% 60.7% 19.0%

Notes: Estimation of (29) in the pooled sample of 1,444 CZs in 1990-2000 and 2000-2007. All specifications include the set of baseline con-
trols in Table 1. The regressor is the predicted impact of the (de-meaned) exposure to the China shock obtained from the model with interme-
diate production in Section 4 in Panels A and B, and from the model without intermediate production in Section 3 in Panels C and D. Each
panel uses parameter estimates indicated in the panel’s label. In Panels A, B and C standard errors in parentheses are clustered by state.
In Panel D, standard errors in parentheses are computed with the inference procedure for shift-share specifications in Adão et al. (2019).

Table B.14: Fit of the Model for U.S. Trade Outcomes across Sectors

Dependent variable: Change in
Log of Exports Log of Imports

(1) (2)

Fit Coef. (ρY ) 1.39 0.95
(0.42) (0.26)

p-value of H0 :ρY =1 35.0% 84.4%

Notes: Column (1) reports the fit coefficient of a regression of observed log-changes in U.S. exports (aggregated for all CZs) on its
model-predicted analog in response to the China shock across 368 4-digit SIC manufacturing sectors in the periods of 1991-2000 and
2000-2007, weighted by initial exports. Columns (2) reports the corresponding fit coefficient for U.S. imports (aggregated for all CZs).
Regressors are computed using the (de-meaned) observed shock, ζ̈China,s, and the model without intermediate production in Section 3
for the estimates in Panel C of Table 2. Robust standard errors in parentheses are clustered by 128 3-digit SIC sectors.
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Figure B.4: Fit Coefficient for Alternative Parameter Values

Notes: In left and center panels, the blue area shows the fit coefficient implied by the estimation of (29) for different values of the parameters
(φ,κ), and the orange area illustrates a fit coefficient of one. The right panel reports the set of parameters for which we fail to reject at a
10% significance level the hypothesis that the fit coefficient is one in the estimation of (29) for either average log wage or log employment
rate (using standard errors clustered by state). The regressor is the predicted impact of the (de-meaned) exposure to the China shock
obtained from the model without intermediate production in Section 3. All specifications include the set of baseline controls in Table 1.

Figure B.5: Log-change in Employment Rate across U.S. States, 2000-2007

Notes: The figure plots the log-change in the employment rate (multiplied by 100) of U.S. states observed in the data between 2000
and 2007 (vertical axis), against the corresponding log-change predicted by the quantitative spatial model in CDP after the China shock
(horizontal axis). The red line is the 45 degree line. We obtain the predicted responses of CDP from their replication files. All variables
are normalized to have mean zero.

92



B.2.3 Aggregate Effects: Robustness and Additional Results

Figure B.6: Impact of the China Shock in General Equilibrium

Notes: The map on the left displays the response of the employment rate to the China shock for each of the 722 CZs that we compute with
the sum of the predicted effects for that CZ in 1990-2000 and 2000-2007 implied by the estimated specification in (34) for the parameters
in Panel A of Table 2. The map on the right displays the analog for the predicted response of the log of the real wage.

Figure B.7: Impact of the China Shock on the Employment Rate in General Equilibrium

Notes: We plot on the vertical axis the change in the employment rate for each of the 722 CZs in 1990-2007 implied the estimated
specification in (34) using the parameters in Panel A of Table 2. The x-axis is the fitted value obtained by regressing the predicted effects
of the model on a constant, ICti , GC

t
i , and IEti . We compute the exposure measures using (3)-(5) with the sectoral shifter defined as

ζ̂tChina,s (instead of ∆Mt
China,s). The red line is the 45-degree line.
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Figure B.8: Impact of the China Shock on the Employment Rate in General Equilibrium, Alternative
Regional Transfers Schemes

Notes: For each value of the share of benefit payments financed with local taxes ($) in the alternative specification of the model in
Appendix A.2.6, the figure reports the average employment rate change across U.S. CZs relative to the average change predicted by
the baseline model (blue line), and the correlation with the employment rate change implied by the baseline model (in which $ = 1).
Predictions computed with the simple model of Section 3 with estimated in Panel C of Table 2.
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C Appendix: Data Construction (Not for publication)

This appendix describes the procedure to construct the data used in Section 5.

C.1 Bilateral Trade Matrix

C.1.1 Data Construction

Country-to-country bilateral trade matrix. We start by creating a country-to-country matrix of
trade flows at the 4-digit SIC classification. We consider the countries listed in Table C.1. We obtain
international trade flows at the product-country level from the BACI dataset, assembled by CEPII, which
we aggregate at the 4-digit SIC level. Since the starting year of the BACI dataset is 1995, we use the trade
flows for 1995 and 2000.45 To obtain domestic spending shares for each country, we note first that our
gravity model implies that Xt

ij,s=(τ tij,sp
t
i,s)

1−σ(P tj,s)
σ−1Etj,s. For any sector s within an aggregate sector

S, assume that, for i 6=j, τ tij,s= τ̃O,ti,S τ̃
D,t
j,S e

τ̃ tij,s . Thus,

lnXt
ij,s= τ̃ tij,s+α

t
i,s+ϕ

t
j,s, (B.2)

where αti,s≡ ln

((
τ̃O,ti,S p

t
i,s

)1−σ
)

and ϕtj,s≡ ln

((
τ̃D,tj,S P

t
j,s

)σ−1
Etj,s

)
.

To get the domestic trade flows, notice that Xt
ii,s = (pti,s)

1−σ(P ti,s)
σ−1Eti,s =

(
eα

t
i,seϕ

t
i,s

)
/
(
τ̃O,ti,S τ̃

D,t
i,S

)
.

Since Xt
ii,S =

∑
k∈SX

t
ii,k,

Xt
ii,s=Xt

ii,S

eα
t
i,seϕ

t
i,s∑

k∈Se
αti,keϕ

t
i,k

(B.3)

We use (B.3) to compute Xt
ii,s. In each year t, we obtain αti,s and ϕtj,s from the estimation of (B.2) with

bilateral trade flows by sector, and Xt
ii,S from the domestic sales in two aggregate sectors in the Eora MRIO

dataset: manufacturing and non-manufacturing.

CZ employment share. We use the same imputation procedure of ADH to compute employment in each
4-digit SIC manufacturing industry for 1980, 1990 and 2000 using the County Business Pattern (CBP). In
year t, we use Lti,s to denote employment in CZ i and 4-digit SIC industry s and `ti,s=Lti,s/L

t
i to denote the

associated employment share.

CZ gross spending shares. We construct gross spending by sector and CZ, eti,s, using

eti,s≡
Eti,s
Eti

=
ξti,s+

∑
kξ
M,t
i,ska

t
k`
t
i,k

1+
∑

ka
t
k`
t
i,k

. (B.4)

where, in year t, ξM,t
i,sk is the share of spending on intermediates of sector s by sector k (common to all

CZs, ξM,t
i,sk = ξM,t

sk ), atk is the ratio of intermediate cost to labor cost of sector k (common to all CZs), and

ξti,s is consumers’ spending share on final goods of sector s (common to all CZs, ξti,s = ξts). We compute

ξtsk≡
Mt
sk∑

s′M
t
s′k

whereM t
sk is the spending of industry k on industry s in the BEA 1992 U.S. Input-Output table

used in Acemoglu et al. (2016a). For manufacturing SIC-4 industries, we compute atk using total material
costs divided by payroll in the NBER manufacturing database for year t. For non-manufacturing industries,

45Although trade data is available for 1990 from UN Comtrade, it is quite sparse across countries and industries.
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Table C.1: Sample of Countries

Argentina Czech Republic Malaysia Singapore
Australia Denmark Mexico Slovakia
Austria Finland Netherlands South Africa
Baltic Republics France New Zealand South Korea
Belarus Germany Norway Spain
Benelux Greece Pakistan Sweden
Brazil Hungary Philippines Switzerland
Bulgaria India Poland Taiwan
Canada Indonesia Portugal Thailand
Chile Ireland Rest of World Ukraine
China Italy Romania United Kingdom
Colombia Japan Russia Uruguay
Croatia Kazakhstan Saudi Arabia Venezuela

Notes: Baltic Republics includes Estonia, Lithuania and Latvia.

we compute atk as average the material to payroll ratio across all U.S. non-manufacturing industries in the
WIOD database. Finally, we obtain ξts from the BEA 1992 U.S. Input-Output table.

CZ exports and imports. We follow three steps to create exports and imports for each CZ and industry.
First, we compute the CZ spending on sector s as Eti,s = eti,sL

t
i where eti,s is the sectoral spending share

described above and Lti is the total employment in the CZ. Second, for each sector s, we compute the share of
CZ i in national spending, ẽti,s=Eti,s/

∑
jE

t
j,s, and in national employment, ˜̀t

i,s=Lti,s/
∑

jL
t
j,s. Third, we use

the US Census data at the state-sector level for 1997 to compute the share of each state in the exports/imports
to/from each foreign country in a SCTG category, which is the 40-sector classification used by the US

Census.46 This yields βstate,i,s =
Xstate,i,s
XUS,i,s

, where i is any of 52 foreign importer, and βi,state,s =
Xstate,i,s
XUS,i,s

,

where i is any of 52 foreign exporters. We use the same share βstate,i,s and βstate,i,s for all SIC-4 industries
within the same SCTG category. Finally, in each year t, we take US imports Xt

i,US,s and US exports Xt
US,i,s

in each sector s and foreign country i, and split them across CZs using the following expressions:

Xt
ij,s=

ẽtj,s∑
j′∈stateẽ

t
j′,s

βi,state,sX
t
i,US,s and Xt

ji,s=
˜̀t
j,s∑

j′∈state
˜̀t
j′,s

βstate,i,sX
t
US,i,s.

CZ-to-CZ bilateral trade matrix. We follow three steps to impute trade flows across CZs using the
gravity trade structure of our model. First, for each SCTG category, we use state-to-state shipment data
from the Commodity Flow Survey in 1997 to estimate

lnXij,s=δs+β1lnDij+β2lnEj,s+β3lnRi,s+β4di=j+εij,s (B.5)

where i is the origin state, j is the destination state, s is the SCTG category, Dij is the bilateral distance

46We construct state-sector exports and imports as follows. First, we use the US Merchandise Trade Data for
1997 released by the US Census to create a mapping from each of the 44 US districts to the 50 US states, in terms of
share of imports and exports to each foreign country. Note that this is done at the aggregate level as this information
is not available at the industry-level. We then use US Census data to create district-level exports and imports at
the HS-6 level for 1997. Finally, we use the mapping previously constructed to obtain state-HS6, and then state-SIC
4 digit, trade flows with our sample of foreign countries.
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between the population centroids of states i and j, Ej,s are expenditures, Ri,s are revenues, di=j is a dummy
that equals 1 when i=j.

Second, we use the estimated coefficients to impute trade flows across CZs with the following gravity
specification:

lnXt
ij,s≡ β̂1lnDij+β̂2lnẽtj,s+β̂3ln˜̀t

i,s+β̂4dstate(i)=state(j) (B.6)

where Dij is the distance between the population centroids of CZs i and j, and dstate(i)=state(j) is a dummy
equal 1 if i and j belong to the same state.

Lastly, we re-scale the imputed CZ-to-CZ trade flows so that the sum of the bilateral flows in each SIC
sector across all CZs is equal to the total U.S. domestic sales in each SIC sector in the country-to-country
trade matrix.

Trade balance. Finally, we impose that trade is balanced at the regional level, as in the baseline model.
We use the trade flows obtained above to compute matrix x̄t whose entries correspond to the share of
spending of each region j on another region i. Under trade balance, the vector of total revenue in the world
economy, Rt, must satisfy x̄tRt=Rt and, therefore, (Ī−x̄t)Rt=0. Notice that it is always possible to find
a vector Rt that satisfies this system since (Ī−x̄t) is singular (

∑
ix
t
ij = 1 for every j). Thus, we find the

vector Rt as the eigenvector of (Ī−x̄t) associated with the eigenvalue of zero. Without loss of generality,
we then normalize it such that world GDP is one,

∑
iR

t
i=1.

C.1.2 Validation Tests

We first evaluate the correlation between the expenditure shares eti,s constructed in equation (B.4) and
the spending shares implied by the shipment data for U.S. states. To this end, for each of the 40 SCTG
categories, we compute state-level total shipment inflow in the Commodity Flow Survey (CFS) for 1997.
We then construct state-level spending shares at each SCTG category using the expenditure shares eti,s in
equation (B.4) for the CZs in the state. Specifically, we first aggregate our expenditure shares at the SCTG
level using a crosswalk between SIC-4 and SCTG categories, and then compute total spending by SCTG in
each state using the total expenditure of the CZs in that state. Table C.2 reports the result of a regression of
the expenditure shares computed from the CFS on our constructed gross spending shares in 1990 and 2000.
We can see that they are positively and significantly correlated, with an OLS coefficient close to 1 and a R2
of 0.95.

We then proceed to assess whether our constructed CZ-level trade matrix reproduces the patterns of
observed trade flows for U.S. states. We use the CFS to measure bilateral shipments between U.S. states
in each SCTG category for 1997, 2002 and 2007. To obtain comparable data, we aggregate the bilateral
trade flows for the CZs in the same state and the SIC sectors in the same SCTG category. Table C.3 reports
the results of regressing actual shipment data on the corresponding trade flow obtained from our trade
matrix. Column (1) considers domestic flows between U.S. states, column (2) considers export flows from
U.S. states to foreign countries, and column (3) considers import flows from foreign countries to U.S. states.
All specifications include sector fixed-effects. We can see that the predicted trade flows are significantly and
positively related to the actual flows, with coefficients close to 1. Notice also that our imputed data captures
a large share of the variation in bilateral trade flows. The R2 is above 0.8 for exports and imports of U.S.
states, and around 0.5 for domestic flows between U.S. states.
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Table C.2: Validation Test – Gross Expenditure Shares

Dependent variable: Observed expenditure shares, 1997
(1) (2)

Constructed expenditure shares, 1990 1.275***
(0.01)

Constructed expenditure shares, 2000 1.265***
(0.01)

Constant -0.009*** -0.009***
(0.00) (0.00)

Observations 1,392 1,392
R2 0.95 0.95

Notes: Sample of 1,392 state-SCTG pairs, where SCTG is the industry classification used in the CFS. Dependent variable is the observed
expenditure share in 1997 computed from the CFS. The regressors are the expenditure shares computed in equation (B.4), aggregated
at the state-SCTG level. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.10

Table C.3: Validation Test – Bilateral Trade Flows

(1) (2) (3)

Panel A: Log of Actual Flows in 1997

Log of Predicted Flows in 1997 1.068*** 0.973*** 0.993***
(0.01) (0.00) (0.00)

Observations 64,512 68,544 68,544

R2 0.512 0.950 0.950

Panel B: Log of Actual Flows in 2002

Log of Predicted Flows in 2002 1.024*** 0.847*** 0.884***
(0.01) (0.00) (0.00)

Observations 64,512 68,544 68,544

R2 0.509 0.816 0.837

Panel C: Log of Actual Flows in 2007

Log of Predicted Flows in 2007 1.047*** 0.797*** 0.861***
(0.01) (0.00) (0.00)

Observations 64,512 68,544 68,544

R2 0.477 0.806 0.827

Flow type:
U.S. state to U.S. state Yes No No
U.S. state to Country No Yes No
Country to U.S. state No No Yes

Notes: The dependent variable in column (1) is the actual shipment flow reported in the CFS for state-state-SCTG triples. The dependent
variables in columns (2) and (3) are trade flows constructed from the US Census trade data for state-country-SCTG triples. The regressors
are the trade flows constructed using our methodology for the years 1997, 2002 and 2007, aggregated at the state-state-SCTG or state-
country-SCTG level. All regressions include sector fixed effects. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.10

C.2 Trade in Intermediate and Final Goods

The methodology described in the previous section yields a bilateral matrix of gross trade flows between
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722 U.S. CZs and 52 countries. While this is enough to implement the baseline model of Section 3, the
estimation of the more general model with input-output links of Section 4 requires bilateral trade flows in
intermediate and final goods. We now describe how we proceed to construct such data. Our procedure relies
on the fact that, in our model, trade flows in final goods and intermediate inputs between two markets i and
j can be written respectively as XC

ij,s=xij,sξj,sEj and XM
ij,sk=xij,sξ

M
j,ska

M
j,kRj,k, where xij,s is the matrix of

gross trade shares within sector s. This property is the by-product of the assumption that the elasticity
of substitution between products of different origins is the same for final consumption and intermediate
consumption in all sectors, as in Caliendo and Parro (2015) and in the literature reviewed by Costinot
and Rodŕıguez-Clare (2014). Therefore, we only need to complement the bilateral matrix of trade shares
described above with data on the sectoral spending shares of final and intermediate expenditures.

C.2.1 Final Spending Shares

Our main data source is the Consumer Expenditure Survey (CEX) Public-use Micro-data from the U.S.
Bureau of Labor Statistics for the years of 1996 and 2000. We first combine the individual-level information
in the interview and diary databases to generate annual average household expenditure in each U.S. state on
the different product categories in the CEX (i.e., the UCC codes). We then construct a crosswalk from the
UCC product classification used in the CEX to 3-digit SIC sectors, using the UCC description provided by
the BLS. For the states without data in the CEX, we assign the final expenditure shares of the US Census
division to which that state belongs. For all foreign countries, we set the share of final spending on each SIC
sector to be the same as that reported in the 1992 U.S. IO table from the BEA.

C.2.2 Intermediate Spending Shares

We measure the sectoral intermediate spending shares in each CZ and country by assuming that aMj,k =

aj
(
1−aLk

)
where aLk is the share of labor in sector k’s total cost (common to all countries). We first describe

how we calibrate ai and then how we construct each variable.
First, from the good market clearing condition,

Ri,s=
∑
j

xij,s

(
ξj,sEj+

∑
k

ξMj,skaja
M
k Rj,k

)
,

where Ej is market j’s expenditure on final goods, and ξj,s and ξMj,sk are market j’s final and intermediate
spending shares. We can write this expression in matrix form and invert it:

R(a)=

∞∑
d=0

(
Ā(a)

)d
F , (B.7)

where F ≡
[∑

jxij,sξj,sEj

]
is

, Ā(a)= x̄Adiag(aj) and x̄A≡ [xij,sξ
M
j,ska

M
k ]is,jk.

Second, from the labor market clearing condition,

Wi(a)=
∑
s

(1−aMs aj)Ri,s(a), (B.8)

where Ri,s(a) is given by (B.7).
Finally, we calibrate a to minimize the difference between the observed value-added in market i, Wi,

and the one predicted by equation (B.8), Wi(a):
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Figure C.1: Share of World Value Added

Notes: For each CZ and foreign country, each graph plots the share of world value added observed in the data against the corresponding
share predicted by our calibration procedure.

a∗=arg min
aj∈(0,1/maxk{aMk })

√∑
i

(Wi−Wi(a))2.

To implement this calibration, we use the within-sector bilateral trade shares, xij,s, that we constructed
with the methodology described in Appendix C.1. The labor shares aLk are obtained from the NBER
Manufacturing database. For all markets, we use the 1992 BEA IO table to measure final and intermediate
spending share. For all countries, we measure aggregate value-added using the WIOT. For the U.S., we split

value-added across CZs by setting value-added in CZ i to Wi=

(
WP
i∑

j∈USW
P
j

)
WUS , where WP

i is the CZ’s

wage bill in the CBP. Similarly, we use the WIOT to measure aggregate final expenditure in each country,

and split total final expenditure in the U.S. across CZs using the same payroll shares, Ei=

(
WP
i∑

j∈USW
P
j

)
EUS .

Figure C.1 shows that our calibration procedure almost exactly matches the observed shares of value added
across U.S. CZs and foreign countries.
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